递归,路径总和
- 题目一:路径总和 [https://leetcode.cn/problems/path-sum/](https://leetcode.cn/problems/path-sum/)
- 题目二:路径总和II[https://leetcode.cn/problems/path-sum-ii/description/](https://leetcode.cn/problems/path-sum-ii/description/)
- 题目三:路径总和III [https://leetcode.cn/problems/path-sum-iii/description/](https://leetcode.cn/problems/path-sum-iii/description/)
- 路径总和IV
题目一:路径总和 https://leetcode.cn/problems/path-sum/
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
树中节点的数目在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
解题思路:
- 利用递归思想,遍历所有节点,如果有满足条件的则返回true;
- 若当前节点不是叶子节点,则将目标值减去当前节点值,并传递到左右节点去判断
代码实现:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if (root == null) {
return false;
}
if (root.left == null && root.right == null) {
return root.val == targetSum;
}
int remain = targetSum - root.val;
return hasPathSum(root.left, remain) || hasPathSum(root.right, remain);
}
}
题目二:路径总和IIhttps://leetcode.cn/problems/path-sum-ii/description/
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:[]
示例 3:
输入:root = [1,2], targetSum = 0
输出:[]
提示:
树中节点总数在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
解题思路:
- 回溯法,构造一个backtrack回溯函数,确定递归的参数,以及满足成立的条件
- 及时回退路径中的元素
代码实现:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) {
return res;
}
List<Integer> path = new LinkedList<>();
backtrack(root, targetSum, res, path);
return res;
}
private void backtrack(TreeNode root, int sum, List<List<Integer>> res, List<Integer> path) {
path.add(root.val);
//若是到了叶子节点,判断是否满足条件
if (root.left == null && root.right == null) {
if (sum == root.val) {
res.add(new ArrayList(path));
}
//不满足直接返回
return;
}
if (root.left != null) {
backtrack(root.left, sum - root.val, res, path);
//回溯
path.removeLast();
}
if (root.right != null) {
backtrack(root.right, sum - root.val, res, path);
//回溯
path.removeLast();
}
}
}
题目三:路径总和III https://leetcode.cn/problems/path-sum-iii/description/
给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。
路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
示例 1:
输入:root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
输出:3
解释:和等于 8 的路径有 3 条,如图所示。
示例 2:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:3
提示:
二叉树的节点个数的范围是 [0,1000]
-109 <= Node.val <= 109
-1000 <= targetSum <= 1000
解题思路
- 递归回溯法
- 遍历每一条路径,先从根节点开始,执行递归回溯
- 依次递归遍历左右节点,执行递归回溯
代码实现:方法1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int count = 0;
public int pathSum(TreeNode root, long targetSum) {
if (root == null) {
return 0;
}
backtrack(root, targetSum);
pathSum(root.left, targetSum);
pathSum(root.right, targetSum);
return count;
}
//注意sum使用long类型,否则int可能会超出限制
private void backtrack(TreeNode node, long sum) {
if (node == null) {
return;
}
if (node.val == sum) {
count++;
}
if (node.left != null) {
backtrack(node.left, sum - node.val);
}
if (node.right != null) {
backtrack(node.right, sum - node.val);
}
return;
}
}
解法2:
- 前缀和法
- 解法一中应该存在许多重复计算,我们定义节点的前缀和为:由根结点到当前结点的路径上所有节点的和。
- 定义一个map集合存储前缀和的值及对应该前缀和值的个数
- 当前缀和减去目标值的结果存在前缀和集合中,则表明路径中存在目标值的路径
- 遍历出栈时,需要在集合中进行删除当前前缀和的操作
代码实现:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int pathSum(TreeNode root, int targetSum) {
Map<Long, Integer> prefix = new HashMap<Long, Integer>();//用Map保存前缀和
prefix.put(0L, 1);//初始放入前缀和0,和其1
return dfs(root, prefix, 0, targetSum);//进入递归
}
public int dfs(TreeNode root, Map<Long, Integer> prefix, long curr, int targetSum) {
if (root == null) return 0;
int ret = 0;//符合条件的路径条数
curr += root.val;//当前路径值(前缀和)
//看看当前路径和 - 目标值,是否等于路径上的一个前缀
//如果是的话,说明当前路径,去掉某些前缀结点,刚好符合targetSum
//如果没有,那么ret依然是0
ret = prefix.getOrDefault(curr - targetSum, 0);
//将当前路径前缀和,加入到map中
prefix.put(curr, prefix.getOrDefault(curr, 0) + 1);
//深度优先
ret += dfs(root.left, prefix, curr, targetSum);
ret += dfs(root.right, prefix, curr, targetSum);
//当此结点的遍历出栈时,要将map中对应的前缀和去掉
//否则其它路径的前缀和很可能和当前路径的前缀和冲突
prefix.put(curr, prefix.getOrDefault(curr, 0) - 1);
//返回符合条件路径条数
return ret;
}
}
路径总和IV
解题思路:
如果题目给定的是二叉树的根节点,那么直接 dfs 即可。
现在题目给的是用整数来表示的节点。
画出深度为 4 的完全二叉树:
其中,数字表示该节点在当前所在层的位置。
通过观察可知,对于某一个节点来说,如果它的位置编号为 i,那么,它的左子节点的位置编号为 i × 2 - 1,它的右子节点的位置编号为左子节点位置编号加一。
于是,算法流程为:
-
先把给定的节点用 Map 记录起来,key 为整数的前两位,value 为整数的后一位,即 key 为位置信息,value 为权值。map.put(num / 10, num % 10);
-
定义一个全局遍历 ans 表示所有的路径和,定义一个局部变量 sum 表示一条路径上的权值和。
-
从根节点开始 dfs:
- 取出当前节点 node 的权值加入到 sum 中:sum += map.get(node);
- 取出当前节点 node 的位置信息:depth = node / 10; pos = node % 10;
- 计算出左右子树的位置信息:left = (depth + 1) * 10 + pos * 2 - 1;right = left + 1;
- 如果 left 和 right 均不在 map 中,说明一条路径计算完毕,ans += sum; 否则,继续向下 dfs。
代码实现:
class Solution {
private int ans = 0;
private Map<Integer, Integer> map;
public int pathSum(int[] nums) {
// key 为深度和位置, value 为权值
map = new HashMap<>();
for (int num : nums) {
map.put(num / 10, num % 10);
}
dfs(nums[0] / 10, 0);
return ans;
}
/**
* @param node
* @param sum 包括 num 之前的总和
*/
private void dfs(int node, int sum) {
if (!map.containsKey(node)) {
return;
}
sum += map.get(node);
int depth = node / 10;
int pos = node % 10;
//下一层左右节点key值
int left = (depth + 1) * 10 + pos * 2 - 1;
int right = left + 1;
if (!map.containsKey(left) && !map.containsKey(right)) {
// 当前节点是叶子节点
ans += sum;
} else {
dfs(left, sum);
dfs(right, sum);
}
}
}