1.论文主题:
提出一个统一的ner方法,因为ner可以分为overlapped、discontinuious、flat,flat可能好识别一点,但是其他两者有点复杂。
目前的几种ner方法:
- 基于标签:难以找到一个适合所有子标签的标签方案,常见标签有BIO等。
- 基于超图:用图结构表示实体和实体之间的关系,但是会出现结构错误和模糊歧义
- Seq2Seq:基于前面的词生成后面的词,耗费资源而且前面错误会导致后面的生成错误
- 基于跨度:枚举所有跨度并进行分类,耗费资源。
当前工作更多关注于找到实体边界,而我们发现瓶颈是实体与实体之间的邻近关系。这种邻近关系对overlapped以及discontinuious的实体也很重要。
所以我们在实体边界识别THW中引入了相邻关系NNW。
2.模型
- Bert+LSTM:生成token
- Convolution Layer:
生成标签表格,模仿bert的输入,加入了距离和区域(用于区分上下三角区域)信息,使用膨胀卷积捕捉远近单词之间的信息。 - Co-Predictor Layer:
借鉴了残差连接的思想,使用两个预测器一起预测单词与单词之间的关系 - Decoder:
进行解码,NNW与THW一起协同识别从简单到复杂的关系。
3.论文工作
对overlapped、discontinuious、flat在各种方法上的指标进行预测,结果本方法在大部分数据集上取得较好的效果。