w2ner论文精读

1.论文主题
提出一个统一的ner方法,因为ner可以分为overlapped、discontinuious、flat,flat可能好识别一点,但是其他两者有点复杂。

目前的几种ner方法:

  • 基于标签:难以找到一个适合所有子标签的标签方案,常见标签有BIO等。
  • 基于超图:用图结构表示实体和实体之间的关系,但是会出现结构错误和模糊歧义
  • Seq2Seq:基于前面的词生成后面的词,耗费资源而且前面错误会导致后面的生成错误
  • 基于跨度:枚举所有跨度并进行分类,耗费资源。

当前工作更多关注于找到实体边界,而我们发现瓶颈是实体与实体之间的邻近关系。这种邻近关系对overlapped以及discontinuious的实体也很重要。

所以我们在实体边界识别THW中引入了相邻关系NNW。

2.模型
在这里插入图片描述

  • Bert+LSTM:生成token
  • Convolution Layer:
    生成标签表格,模仿bert的输入,加入了距离和区域(用于区分上下三角区域)信息,使用膨胀卷积捕捉远近单词之间的信息。
  • Co-Predictor Layer:
    借鉴了残差连接的思想,使用两个预测器一起预测单词与单词之间的关系
  • Decoder:
    进行解码,NNW与THW一起协同识别从简单到复杂的关系。
    在这里插入图片描述
    在这里插入图片描述
    3.论文工作
    对overlapped、discontinuious、flat在各种方法上的指标进行预测,结果本方法在大部分数据集上取得较好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值