机器学习 & 深度学习
文章平均质量分 78
机器学习 Machine Learning
深度学习 Deep Learning
早起CaiCai
早起学习 ing
展开
-
Pytorch解决 多元回归 问题的算法
回归是一种基本的统计建模技术,用于建立因变量与一个或多个自变量之间的关系。我们将使用 PyTorch(一种流行的深度学习框架)来开发和训练线性回归模型。二元回归的简单示例。原创 2024-06-11 14:58:49 · 762 阅读 · 0 评论 -
Pytorch 实现简单的 线性回归 算法
Pytorch涉及的基本数据类型是tensor(张量)和Autograd(自动微分变量)原创 2024-06-11 08:25:24 · 661 阅读 · 0 评论 -
PINNs - GitHub (blog)
关于PINNs的博客总结原创 2023-09-04 09:30:05 · 579 阅读 · 0 评论 -
基于物理信息的神经网络(Physics-informed Neural Networks;PINNs)Part-1(简单介绍)
基于物理信息的神经网络(Physics-informed Neural Networks;PINNs)Part-1(简单介绍)原创 2023-06-03 08:35:25 · 3660 阅读 · 0 评论 -
cs109-energy+哈佛大学能源探索项目 Part-3(探索性分析)
cs109-energy+哈佛大学能源探索项目 Part-3(探索性分析)原创 2023-06-02 22:44:48 · 1502 阅读 · 0 评论 -
cs109-energy+哈佛大学能源探索项目 Part-2.2(Data Wrangling)
cs109-energy+哈佛大学能源探索项目 Part-2.2(Data Wrangling)原创 2023-05-22 21:16:23 · 332 阅读 · 0 评论 -
机器学习项目实战-能源利用率 Part-5(模型解释)
机器学习项目实战-能源利用率 Part-5(模型解释)原创 2023-05-21 10:57:47 · 600 阅读 · 0 评论 -
机器学习项目实战-能源利用率 Part-4(模型构建)
机器学习项目实战-能源利用率 Part-4(模型构建)原创 2023-05-21 08:18:23 · 692 阅读 · 0 评论 -
机器学习项目实战-能源利用率 Part-3(特征工程与特征筛选)
机器学习项目实战-能源利用率 Part-3(特征工程与特征筛选)原创 2023-05-20 10:28:28 · 1201 阅读 · 0 评论 -
cs109-energy+哈佛大学能源探索项目 Part-2.1(Data Wrangling)
cs109-energy 哈佛大学能源探索项目 Part-2.1(数据整理)原创 2023-05-20 08:43:54 · 1636 阅读 · 0 评论 -
Python 机器学习,数据的标准化
数据的标准化。原创 2023-05-18 15:57:22 · 1737 阅读 · 0 评论 -
cs109-energy+哈佛大学能源探索项目 Part-1(项目背景)
哈佛大学能源探索项目 Part-1(项目背景)原创 2023-05-18 10:48:54 · 581 阅读 · 0 评论 -
LSTM-理解 Part-3(LSTM Networks)
LSTM-理解 Part-3 (LSTM Networks)。原创 2023-05-18 09:41:37 · 664 阅读 · 0 评论 -
机器学习项目实战-能源利用率 Part-2(探索性数据分析)
探索性数据分析。原创 2023-05-18 08:40:03 · 668 阅读 · 0 评论 -
机器学习项目实战-能源利用率 Part-1(数据清洗)
机器学习项目实战 - 能源利用率 Part1(数据清洗)原创 2023-05-17 16:35:21 · 711 阅读 · 0 评论 -
从几周到分钟:机器学习模型预测风暴潮模型更快【Paper】
从几周到分钟:机器学习模型预测风暴潮模型更快。原创 2022-02-24 22:38:11 · 235 阅读 · 0 评论 -
LSTM-理解 Part-2(RNN的局限性)
LSTM理解(RNN的局限性)原创 2023-05-17 09:53:45 · 399 阅读 · 0 评论 -
基于回归模型(贝叶斯岭回归、XGB、SVR等)销售额预测
机器学习中用于回归的算法也较多,在这篇博客中是对回归模型的学习。原创 2023-05-17 08:10:04 · 1808 阅读 · 1 评论 -
使用 Conv1D-LSTM 进行时间序列预测:预测多个未来时间步【优化】
Conv1D-LSTM时间序列预测原创 2023-05-16 16:06:55 · 6782 阅读 · 6 评论 -
Python(Keras)实现 LSTM 对销售额的预测+TensorFlow2安装
深度学习模型LSTM的学习与实践。原创 2023-05-16 11:02:14 · 2345 阅读 · 10 评论 -
Python LSTM时序数据的预测(数据处理的方法)
Python - LSTM 学习原创 2021-06-18 23:32:50 · 184 阅读 · 0 评论 -
LSTM-理解 Part-1(RNN:循环神经网络)
RNN的理解。原创 2023-05-15 09:24:25 · 438 阅读 · 0 评论 -
Pytorch神经网络【手写数字识别】
利用神经网络完成对手写数字进行识别的实例。在手写数字的识别中,我们不关心图形的颜色,所以需要的是灰度图。原创 2022-06-18 20:13:55 · 3095 阅读 · 0 评论 -
【知识卡片】机器学习模型 都需要标准化、归一化吗?什么时候不需要标准化、归一化
机器学习模型都需要标准化、归一化吗?什么时候不需要标准化、归一化?原创 2022-01-08 14:08:34 · 10086 阅读 · 1 评论 -
【code for papers】深度学习在海洋数据推断和亚网格参数化中的应用
海洋学观测受到采样率的限制,而海洋模型则受到有限分辨率和高粘度和扩散系数的限制。因此,来自观测的数据和海洋模型都缺乏小尺度和快速尺度的信息。需要一些方法来提取信息,推断或升级现有的海洋学数据集,以解释或表示未解决的物理过程。原创 2021-12-26 20:28:13 · 2156 阅读 · 0 评论 -
机器学习 Pytorch实现案例 LSTM案例(航班人数预测)
Pytorch学习案例之一。机器学习,Pytorch实现,LSTM案例。航班人数预测。原创 2021-11-14 15:13:39 · 12018 阅读 · 4 评论 -
Python 的进度条库tqdm
tqdm 表示2种的进度条管理参考链接原创 2021-10-26 21:46:06 · 200 阅读 · 0 评论 -
使用 Conv1D-LSTM 进行时间序列预测:预测多个未来时间步
这段代码用于读取一个家庭用电量数据集,并将其转化为 Pandas 数据框(DataFrame)格式。用于后续的分析。原创 2021-07-06 14:39:28 · 715 阅读 · 0 评论 -
Python 机器学习 PCA
0 为什么要进行降维1 维数灾难2 降维的主要方法这2张图实现:from __future__ import division, print_function, unicode_literalsimport numpy as npimport os# to make this notebook's output stable across runsnp.random.seed(42)# To plot pretty figures%matplotlib inlineim原创 2021-02-14 16:10:32 · 293 阅读 · 1 评论 -
Python sklearn的KFold使用
sklearn的K折交叉验证函数KFold使用参考链接1下面这个解释比较详细参考链接2原创 2021-02-13 14:10:19 · 7678 阅读 · 1 评论 -
Python 机器学习 唐宇迪泰坦尼克号【最新代码】
import pandas #ipython notebooktitanic = pandas.read_csv("titanic_train.csv")titanic.head(5)titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median()) #age将空值填充为平均值 (处理age)titanic.describe()#描述titanic["Sex"].unique()#独特的titanic.loc[titani原创 2021-02-13 10:13:09 · 2082 阅读 · 2 评论 -
Python 机器学习 房价预测,来源-超哥杂货铺
超哥参考的链接房价预测-github上的例子超哥杂货铺超哥杂货铺-房价预测在这里网页爬取数据的部分可以不用管pandas读取数据表示对这个属性的信息查看对这些值的详细信息的查看直接绘图Python调整图与图之间的距离见我之前的文章Python调整多子图之间的间距在matlab也有对应的函数包对中等收入做变化,其实也是特征方程这个特征方程有点难看懂这个属性值,以及取整了这个收入大于5的变成5各个类别所占的比例这里也算是特征方程了分层采样;这一步也不是原创 2021-01-29 19:00:20 · 94 阅读 · 0 评论