计蒜客 And and Pair 题解

题目链接

分析:

(将一个二进制数的每一位 1 1 1的下标作元素构成一个集合)
i i i& n n n= i i i,那么就是说i中的 1 1 1 n n n中的子集。 i i i的个数即为 n n n的子集的个数。 i i i& j j j= 0 0 0,那么说 i i i j j j没有共同位上的 1 1 1,即交集为空集。故对于一个确定的 i > 1 i>1 i>1,j的个数有 2 m 2^{m} 2m个( m m m i i i中最高位 1 1 1后的 0 0 0的个数)

所以可以想到从后往前枚举,即从小到大枚举i的最高位的位数,例如 n n n= 11010 11010 11010
先枚举 i i i= 1 1 1 0 0 0,再枚举 i i i= 1 1 1 0 0 0 _ \_ _ 0 0 0的所有情况( _ \_ _ 表示可以填入 0 0 0 1 1 1的空位),然后是 i i i= 1 1 1 _ \_ _ 0 0 0 _ \_ _ 0 0 0
分析到了这里就很容易想到动态规划的方法了。定义 d p [ u ] dp[u] dp[u]为第 u u u个枚举状态(即从后往前i的最高位取第u个1)时的 i j ij ijpair的数目,那么可得:
d p [ u ] = ∑ v = 1 u − 1 d p [ v ] ⋅ 2 k u , v − 1 + 2 l dp\left[ u\right] =\sum ^{u-1}_{v=1}dp\left[ v\right] \cdot 2^{k_{u,v}-1}+2^{l} dp[u]=v=1u1dp[v]2ku,v1+2l
k u , v k_{u,v} ku,v:从第 v v v 1 1 1到第 u u u 1 1 1间的下标差
l l l :第 u u u 1 1 1后面的二进制数的个数

公式的具体解释:
以上面的 n = 11010 n=11010 n=11010 为例, i i i= 1 1 1 _ \_ _ 0 0 0 _ \_ _ 0 0 0 u = 3 u=3 u=3)可以分解为
i i i= 1 1 1 [ 1 1 1 0 0 0 _ \_ _ 0 0 0] ( u = 2 u=2 u=2)

i i i= 1 1 1 0 0 0 0 0 0 [ 1 1 1 0 0 0] ( u = 1 u=1 u=1)

i i i= 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
其中[]中的部分分别是 u = 2 , 1 u=2,1 u=2,1时的情况,这样我们就把 u = 3 u=3 u=3的情况分成了 u = 2 , 1 u=2,1 u=2,1的情况和最高位全是0的情况。而 u = 3 u=3 u=3 u = 1 u=1 u=1中间相差了两个0,这两个0在 u = 1 u=1 u=1的基础上又给j带来了两个不确定位,所以加上的是 d p [ 1 ] ⋅ 2 2 dp[1]\cdot 2^{2} dp[1]22,这也就得到了公式的第一部分 ∑ v = 1 u − 1 d p [ v ] ⋅ 2 k − 1 \sum ^{u-1}_{v=1}dp\left[ v\right] \cdot 2^{k-1} v=1u1dp[v]2k1。而第二部分很简单,就是最高位全是0的情况。
虽然得到了公式,但是这个公式的带来的时间复杂度(最坏为 O ( ∣ S ∣ 2 ) O(|S|^{2}) O(S2))仍然不理想。不过容易发现是可以转化成为递推式的。
d p [ u + 1 ] = ∑ v = 1 u d p [ v ] ⋅ 2 k u + 1 , v − 1 + 2 l + k u + 1 , u dp\left[ u+1\right] =\sum ^{u}_{v=1}dp\left[ v\right] \cdot 2^{k_{u+1,v}-1}+2^{l+k_{u+1,u}}\quad dp[u+1]=v=1udp[v]2ku+1,v1+2l+ku+1,u

= ( ∑ v = 1 u d p [ v ] ⋅ 2 k u , v − 1 + 2 l ) ⋅ 2 k u + 1 , u \qquad\qquad=(\sum ^{u}_{v=1}dp\left[ v\right] \cdot 2^{k_{u,v}-1}+2^{l})\cdot2^{k_{u+1,u}} =(v=1udp[v]2ku,v1+2l)2ku+1,u

= ( ∑ v = 1 u − 1 d p [ v ] ⋅ 2 k u , v − 1 + 2 l + d p [ u ] ⋅ 2 − 1 ) ⋅ 2 k u + 1 , u \qquad\qquad\qquad\qquad\qquad=(\sum ^{u-1}_{v=1}dp\left[ v\right] \cdot 2^{k_{u,v}-1}+2^{l}+dp\left[ u\right]\cdot2^{-1})\cdot2^{k_{u+1,u}} =(v=1u1dp[v]2ku,v1+2l+dp[u]21)2ku+1,u

= ( d p [ u ] + d p [ u ] ⋅ 2 − 1 ) ⋅ 2 k u + 1 , u \quad\qquad=(dp\left[ u\right]+dp\left[ u\right]\cdot2^{-1})\cdot2^{k_{u+1,u}} =(dp[u]+dp[u]21)2ku+1,u

= 3 ⋅ 2 k u + 1 , u − 1 ⋅ d p [ u ] =3\cdot 2^{k_{u+1,u}-1} \cdot dp[u]\quad =32ku+1,u1dp[u]
第一次用LaTex,等号不会对齐[捂脸]
这下我们就得到了简洁的递推式 :

d p [ u + 1 ] = 3 ⋅ 2 k u + 1 , u − 1 ⋅ d p [ u ] dp\left[ u+1\right]=3\cdot 2^{k_{u+1,u}-1} \cdot dp[u] dp[u+1]=32ku+1,u1dp[u]

时间复杂度降低到了 O ( ∣ S ∣ ) O(|S|) O(S)。不计字符串的存储空间,空间复杂度为 O ( 1 ) O(1) O(1)
注意:上面我们求的情况中没有包含 i = 0 i=0 i=0的情况,所以记得最后将计算结果加 1 1 1

AC代码:

#include<iostream>
#include<string>
using namespace std;
const int MAX_N=1e5+10;
const int MOD=1e9+7;
typedef long long ll;
int main()
{
	ll sum=0,now=0,last=0;
	string s;
	int t;
	cin>>t;
	while(t--)
	{
		cin>>s;
		int i;
		for(i=s.size()-1,now=1;i>=0&&s[i]!='1';i--,now=(now*2)%MOD);//从后往前找到第一个1
		if(i<0){cout<<1<<'\n';continue;}//n=0
		sum=(now+1)%MOD;
        last=now;
        now=1;
		for(i--;i>=0;i--)
			if(s[i]=='1')
			{
				last=(now*3*last)%MOD;
				sum=(last+sum)%MOD;
				now=1;
			}
			else now=(now*2)%MOD;
		cout<<sum%MOD<<'\n';
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值