动态规划-01背包问题

12 篇文章 0 订阅
2 篇文章 0 订阅

文章目录


动态规划

定义

将大问题分解为多个小问题(转移方程)

动态:“随时变”(每一步) 规划:考虑之后的问题(DFS)

对于动态规划,我们面对的是一个求最优解或统计之类的问题(背包问题等),这个问题基于“我们要模拟完成一个大任务”,这个大任务可以分成若干步骤,每个步骤有若干种决策,每个步骤完成后,就到达了一个阶段性状态
比如,你要从A地到Z地,没有直达,所以第一步需要到一个中间地点,比如H或I,第二步再前进,比如到P或Q,最后到达Z,每一步有若干决策,比如第一步你可以决定到H或I的中的某个,大致就是这样一个模型,可以自己画个地图看看.

等等,你大概发现问题了,如果第一步到H和I都可以,第二步到P和Q都可以,那我每一步只选最优,不就用贪心得到结果了吗,没错,如果你需要经历的每个阶段状态跟决策无关,那就贪心得到结果好了

然而现实情况可能是,你第一步的选择会影响后面的分支,比如你第一步可以选择到H或I,但是到了H后,你只能选择经过P或Q到Z了,而如果到了I,你只能选择R或S到Z,这样一来,即便第一步到H或I你选择了较好的一条路,也不保证最终结果最优,因为比如你选了H,那万一I-R-Z的路要比H开始到Z的路径短了更多,最优路径可能是A-I-R-Z,所以你要把这些路都尝试一遍,才知道哪个最优

严格来说,动态规划不是一种算法,没有固定的框架,而是一种思路

最后用经典的0-1背包问题做个例子,巩固一下吧,这个任务是,我们从N个物品选若干塞到可以承受最大重量W的包包里面,要价值最大,因此就可以将任务分成N个步骤,每个步骤面对第i号物品,决策有两条:选,还是放弃,这里的状态,就是影响之后步骤决策的因素,在这里,就是“背包的剩余空间”
比如,物品的重量是1,2,3,4,5,6,W=12,从头决策,0表示放弃,1表示选,规划后三次后有八种状态:
000 剩12
001 剩9
……(略)
110 剩9
……(略)
前三次步骤后,001和110到达了同样的状态,都是剩余可装重量9的东西,这样在剩下的决策中,这俩分支走的路都是一样的,跟你之前是选了001还是110没有任何关系(无后效性),因此只要看001价值大,还是110价值大就可以了,8个状态减少为7个,继续BFS下去,每一轮都合并同样状态,完成后,从最后一轮的所有状态中,找到价值最大的就ok了

下面是一道经典的例题

采药

1.题目描述:

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

2.输入:

第一行有两个整数T(1 ≤ T ≤ 1000)和M(1 ≤ M ≤ 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

3.输出:

一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

4.样例:

输入:

70 3

71 100

69 1

1 2

输出:

3

意思就类似于你有一个背包,背包里只能放有限的空间,你要去超市买东西,(你可以买所有的东西),每种商品有价格和大小,你要让你的背包里面价值最大且不被撑爆。

代码:

#include <iostream>
using namespace std;
int result[101][1001];
int main()
{
    int T,M;
    cin>>T>>M;
    for(int i=1;i<=M;i++)
    {
        int perT,perP;
        cin>>perT>>perP;
        for(int j=0;j<=T;j++)
        {
            result[i][j] = result[i-1][j];
        }
        for(int j=0;j<=T;j++)
        {
            if(j+perT<=T)
                result[i][j+perT] = max(result[i-1][j+perT],result[i-1][j]+perP);
            
        }
    }
    cout<<result[M][T]<<endl;
    return 0;
}

关键:

result[i][j+perT] = max(result[i-1][j+perT],result[i-1][j]+perP); 

思路:

依次考虑N件物品,对于容量为v的背包在处理第i件物品时获得的最大价值F,显然有如下递推式:

如果第i件物品的体积C[i]>v

第i件物品必然无法加入背包,F[i][v]=F[i-1][v]

否则是否加入第i件物品需考虑加入背包后是否划算,在这里可以认为这个第i件物品优先加入背包,

那么有

F[i][v]=max{ F[i-1][v], F[i-1][ v-C[i] ] + W[i] }

转移方程:

F[v]=max{F[v],F[v-C[i]]+W[i]}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值