在嵌入式系统中,控制算法是确保系统精确、稳定运行的核心技术之一。它们用于处理和调整系统状态,保证输出达到预定目标。本文将深入探讨几种常见的控制算法,包括 PID控制、串级PID控制,以及 卡尔曼滤波(KF、EKF、UKF),并详细分析其应用和实现细节。
1. PID 控制算法
PID 控制(Proportional-Integral-Derivative Control)是工业控制系统中最基础、最常用的控制算法之一。PID控制通过计算误差的比例、积分和微分部分来调节系统的输出,使系统能够快速、准确地达到预定目标。
PID 控制的三大核心部分
-
比例控制(P):根据当前的误差值进行调节。误差越大,输出值也越大。其计算方式为:
其中,
是比例增益,
error
为目标值与当前值的差异。 -
积分控制(I):对误差进行积分,累计过去的误差,通常用于消除长期的稳态误差。其计算公式为:
是积分增益,积分过程可以使系统保持较小的长期误差。
-
微分控制(D):依据误差变化的速率进行调节,用于防止系统过冲和抑制震荡。公式为:
其中,
是微分增益,反映误差变化的速度。
PID 控制器的实现
以下是一个典型的 PID 控制器结构的实现代码:
typedef struct {
uint8_t mode; // 控制模式
float Kp, Ki, Kd; // PID 参数
float max_out, max_iout; // 输出限幅
float set, fdb; // 目标值与反馈值
float out, Pout, Iout, Dout;
float Dbuf[3]; // 微分项
float error[3]; // 误差项
} PID_t;
float PID_Calc(PID_t *pid, float fdb, float set) {
if (pid == NULL) {
return 0.0f;
}
// 更新误差历史数据
pid->error[2] = pid->error[1];
pid->error[1] = pid->error[0];
pid->set = set;
pid->fdb = fdb;
pid->error[0] = set - fdb;
// 计算位置环 PID
if (pid->mode == PID_POSITION) {
pid->Pout = pid->Kp * pid->error[0];
pid->Iout += pid->Ki * pid->error[0];
pid->Dbuf[2] = pid->Dbuf[1];
pid->Dbuf[1] = pid->Dbuf[0];
pid->Dbuf[0] = pid->error[0] - pid->error[1];
pid->Dout = pid->Kd * pid->Dbuf[0];
// 限制积分输出
LimitMax(pid->Iout, pid->max_iout);
pid->out = pid->Pout + pid->Iout + pid->Dout;
LimitMax(pid->out, pid->max_out);
}
// 计算变化量环 PID
else if (pid->mode == PID_DELTA) {
pid->Pout = pid->Kp * (pid->error[0] - pid->error[1]);
pid->Iout = pid->Ki * pid->error[0];
pid->Dbuf[2] = pid->Dbuf[1];
pid->Dbuf[1] = pid->Dbuf[0];
pid->Dbuf[0] = pid->error[0] - 2.0f * pid->error[1] + pid->error[2];
pid->Dout = pid->Kd * pid->Dbuf[0];
pid->out += pid->Pout + pid->Iout + pid->Dout;
LimitMax(pid->out, pid->max_out);
}
return pid->out;
}
2. 串级 PID 控制
在复杂的控制系统中,特别是电机控制领域,常常使用 串级 PID 控制,它通过将控制系统分为多个环路(如电流环、速度环、位置环)来提高系统的响应速度和控制精度。通常,电流环由电机控制器实现,而用户仅需要设计速度环和位置环。
串级 PID 的优势
-
适应不同工况:电机负载的变化会影响控制效果,尤其是当负载发生变化时,传统的单一位置环 PID 难以保持稳定。串级 PID 控制通过内环(速度环)快速响应,减少了外环(位置环)参数对负载变化的敏感性。
-
稳定性提升:如果仅使用位置环 PID,可能会在接近目标位置时出现震荡现象。引入内环速度 PID 可以使得在稳态时,速度趋近于零,从而避免震荡。
-
速度限制:在串级 PID 控制中,内环的输出可以进行限幅处理,避免了单独使用位置环 PID 时出现过大的电机速度。
串级 PID 调参方法
通常情况下,串级 PID 的参数调节遵循“从内到外”的顺序:首先调整内环(速度环)的 PID 参数,然后再调整外环(位置环)的 PID 参数。
3. 卡尔曼滤波(KF、EKF、UKF)
卡尔曼滤波(Kalman Filter,简称 KF)是一种用于动态系统状态估计的最优滤波器,广泛应用于含噪声的系统中。根据系统的不同特性,卡尔曼滤波有多个变种,包括扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。
卡尔曼滤波(KF)
卡尔曼滤波最早是为了解决线性系统中的状态估计问题。它通过预测和更新步骤来实现最优状态估计,且能够有效地过滤掉系统中的高斯噪声。
卡尔曼滤波的基本方程如下:
- 状态预测:
- 观测更新:
其中, 是系统状态,
是控制输入,
是过程噪声,
是观测值,
是测量噪声。
扩展卡尔曼滤波(EKF)
EKF 用于处理非线性系统。它通过线性化非线性系统,使用标准的卡尔曼滤波器进行状态估计。虽然 EKF 在处理轻度非线性问题时表现良好,但在非线性较强时,其性能可能会大打折扣。
无迹卡尔曼滤波(UKF)
UKF 是为了解决强非线性系统中的状态估计问题。与 EKF 不同,UKF 采用了一种基于“Sigma 点”的采样方法,避免了对系统进行线性化,从而能够更精确地处理非线性问题。
卡尔曼滤波器实现示例
以下是卡尔曼滤波器的简单实现,用于对输入数据进行噪声过滤:
float Kalman_Filter(float data) {
static float prevData = 0;
static float p = 1; // 估计协方差
static float q = 1; // 过程噪声协方差
static float r = 5; // 观测噪声协方差
static float kGain = 0;
p += q;
kGain = p / (p + r); // 计算卡尔曼增益
data = prevData + (kGain * (data - prevData)); // 计算滤波后的数据
p =
(1 - kGain) * p; // 更新协方差
prevData = data;
return data;
}
卡尔曼滤波器结构体实现
typedef struct {
float LastP; // 上次估算协方差
float Now_P; // 当前估算协方差
float out; // 滤波器输出
float Kg; // 卡尔曼增益
float Q; // 过程噪声协方差
float R; // 观测噪声协方差
} KFP; // 卡尔曼滤波器参数
float kalmanFilter(KFP *kfp, float input) {
kfp->Now_P = kfp->LastP + kfp->Q;
kfp->Kg = kfp->Now_P / (kfp->Now_P + kfp->R);
kfp->out = kfp->out + kfp->Kg * (input - kfp->out);
kfp->LastP = (1 - kfp->Kg) * kfp->Now_P;
return kfp->out;
}
总结
控制算法在嵌入式系统中的应用无处不在,特别是在精密控制和数据处理领域。PID控制是最基本也是最常用的控制方法,适用于大多数应用场景。串级PID控制则能够进一步提升复杂系统的精度和响应速度。而卡尔曼滤波(包括KF、EKF和UKF)则为动态系统状态估计和噪声抑制提供了强有力的支持,尤其在高噪声环境下的应用尤为重要。