A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage一种用于脑内出血血肿体积检测的鲁棒性深度学习分割方法
Yu N, Yu H, Li H, et al. A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage[J]. Stroke, 2022, 53(1): 167-176.(citations 3) JCR 分区:Q1;中科院分区:1区TOP【影响因子:7.914】
数据公开:Brain CT Images
原文
-
背景和目的:血肿体积(HV)是决定脑出血(ICH)临床分期和治疗方法的重要指标。本研究的目的是开发一种稳健的深度学习分割方法,用于快速、准确的CT高压分析。
-
方法:开发了一个新的降维UNet(DR-UNet)模型,用于计算机断层扫描图像的分割和HV测量。两个数据集,回顾性数据集中有512名ICH患者的12 568张计算机断层扫描片,前瞻性数据集中有50名ICH患者的1257张片。训练、验证以及内部和外部测试。和外部测试。此外,选择了13个不规则血肿病例,11个硬膜下和硬膜外血肿病例,以及50个不同的 分为3组(<30、30-60和>60 mL)的HV病例,以进一步评估DR-UNet的稳健性。图像 与UNet、模糊聚类法和主动轮廓法的图像分割性能进行了比较。方法进行比较。使用DR-UNet、UNet和Coniglobus公式方法比较了HV测量性能。
-
结果:使用DR-UNet分割模型在2个独立的测试数据集中取得了与临床专家相似的性能。 测试数据集,包括内部测试数据(Dice为0.861±0.139)和外部测试数据(Dice为0.874±0.130)。 从DR-UNet得出的HV测量值与来自人工分割的测量值密切相关(R2=0.9979。 P<0.0001). 在不规则形状的血肿组以及硬膜下和硬膜外血肿组中,DR-UNet比UNet在两个血肿中都更稳健。 在血肿分割和HV测量方面都比UNet稳健。在3个不同的HV组中,分割的统计学意义不大 3个不同的HV组之间的分割准确性没有统计学意义。
-
结论:DR-UNet可以从ICH患者的计算机断层扫描中分割血肿,并对HV进行量化。 与现有的主要方法相比,具有更好的准确性和更高的效率,并具有与临床专家相似的性能。 由于DR-UNet在不同的ICH上具有强大的性能和稳定的分割能力,它可以促进深度学习系统的发展,用于各种临床应用。
-
关键词:脑出血◼聚类分析◼深度学习◼人类◼前瞻性研究
-
背景:脑出血(ICH)占卒中的10%-20%,是世界范围内第二大死亡原因。1.2脑出血病例的大量增加归因于世界人口的增长和老龄化以及人们对出血性卒中认识的提高。鉴于ICH的高发病率和高死亡率,快速诊断和治疗这些患者是非常重要的。3 最初的血肿体积(HV)是做出治疗决定、预测预后和确定治疗重点的关键诊断指标。4 神经影像学是快速诊断ICH和确定潜在病因的关键。 最常见的神经影像学检查方式是计算机断层扫描(CT),它有助于对病人进行分类和适当的治疗。
为了帮助临床专家,最近研究了基于CT图像的自动HV分析,这对改善治疗、减少人为错误、将临床医生从繁琐和耗时的工作中解脱出来非常重要。6,7 由于计算能力的提高和大数据的积累,机器学习方面取得了很大进展。9-12 Shahangian等人13采用主动轮廓法和几何主动轮廓法对血肿进行分割,用于ICH诊断。然而,在主动轮廓法中,血肿的初始区域必须在搜索血肿的准确边界之前手动设置准确的边界。近年来,基于深度学习的图像识别技术的进步已经改变了医学的格局,在各种任务中实现了医生级别的性能。7 ,14-16然而,HV预测的一个基本限制是,它已经被证明很难在不同的数据集中获得稳健的分割性能。研究发现尽管进行了适当的交叉验证训练,但是 当在一个数据集上训练的模型被替换成另一个数据集时,分割性能就会急剧下降。17,18 这仍然是在临床生物学中使用机器学习方法的一个主要障碍。换句话说,基于深度学习的方法的性能在很大程度上取决于 的性能在很大程度上取决于数据集,因此,开发一种 稳健的分割方法非常重要。
-
-
本研究的主要目的是开发一种新型的降维UNet(DR-UNet)分割模型,应用降维的残差卷积单元来取代传统的卷积层。由于更少的参数、更深的结构和更大的感受野,DR-UNet能够缓解基于深度学习的方法中的几个基本问题,这些问题阻碍了实现稳健的性能和确定稳定的HV诊断模型。在这项研究中,我们利用从中国徐州中心医院(XZCH)收集的回顾性和前瞻性数据集,提出了两个主要结果。首先,与UNet、FCM和主动轮廓法相比,DR-UNet实现了统计学上的重大改进。其次,通过对血肿的像素级分割,DR-UNet预测HV,即使在不规则血肿病例、硬膜下和硬膜外血肿病例以及不同的HV病例中,也取得了类似的准确性和稳健性表现。
-
方法:为了尽量减少无意中分享可用于重新识别私人信息的可能性,本研究产生的数据子集和源代码可在figshare (https://figshare.com/articles/figure/Brain_CT_Images/14221796) and GitHub (https://github.com/DR-UNet/dr-unet).
-
病人: 本研究得到了徐州医院伦理委员会的批准,并按照世界医学会 《涉及人类的医学研究的赫尔辛基伦理原则宣言》进行。所有 的CT图像都来自XZCH。CT图像包括在2个数据集中,一个 是模型开发数据集的回顾性收集,一个是特定的测试数据 集,用于训练、验证和测试不同情况下的DR-UNet深度学习模 型。我们综合 了以下3 个 标 准来纳 入 患 者 。 (1 ) 患 者 被 XZCH诊断为ICH;(2)诊断与CT扫描相吻合;(3)非增强CT扫描是在被诊断为ICH后1周内进行的。
-
一位委员会认证的神经放射学家审查了最初确定的病例 ,并确认 512 名 患者(246 名男性和 266 名女性;年龄为 55.13±18.45岁)可以被纳入回顾性数据集,该数据集从2017 年1月至2018年12月收集。对于前瞻性数据集,50名ICH患 者(29名男 性 和 21名 女性 ; 年 龄为60.14±15.17岁 )从 2019年1月至2019年11月参与,以证明深度学习模型的普 适性。【按照三种类型进行分组】根据血肿形状(数据附录中的扩展方法),19前瞻性数 据集中50名血肿形状为III级的患者中有13名被分配到不规则 形状的血肿组。根据血肿位置,50名硬膜下和硬膜外血肿患 者中的11名被分配到硬膜下和硬膜外血肿组。根据HV,50 名患者被分为3组:(1)体积<30 mL(22例),(2)体 积 30至60毫升之间(17例),以及(3)体积>60毫升(11例 ;数据附录中表一)。
-
神经影像数据收集:CT图像是用GE Discovery NM/CT 750HD 扫描仪和飞利浦 Brilliance 64扫描仪获得的。曝光参数为120 kV和250 mAs。 窗宽设置为100Hu,窗位设置为35至45胡。每个头部切片 的厚度为4至5毫米。在回顾性和前瞻性数据集中,我们分别 从512名患者和50名患者中获得了12 568张头部CT切片。原始图像数据采集的详细步骤列于数据附录中的表二。
-
标记血肿的分割和体积:每个切片中血肿分割的标记分两个阶段进行。首先,一名合 格的医生(10年的工作经验)使用自行开发的标签平台标记 血肿的轮廓、类别和位置。其次,在第一阶段的基础上,一 位资深医生(22年的工作经验)修改了缺失和错误标记的 血肿,并确认了血肿的轮廓、类别和位置。这位资深医生产 生的报告被用作回顾性和前瞻性数据集中每个切片的最终标 签(数据附录中的图I)。为了标记前瞻性数据集中每位患 者的HV,3位医生记录了血肿最大层的最长直径、最短直径和 血肿高度,【这种方法比较常用,但不太准确】并分别计算HV值(HV=最长直径×最短直径×最大 血肿层的高度/2)。最后,我们将这3个HV值的平均值作为基 础真理HV。
-
图像预处理:切片以非重叠的256×256像素进行缩放,并转换为灰度图 像,使输入图像通道数为1。在训练模型之前,图像像素被 从0到1归一化。通过应用几何变换(旋转、缩放和平移)进 行实时数据增强,使模型学习到对几何变化不变的特征(数 据附录中的图二)。20,21 没有图像预处理步骤,如去噪、去除 头骨和脑室等。详细的图像预处理步骤列在数据补充中的表 三。
-
DR-UNet神经网络结构:DR-UNet由一个编码(下采样)路径和一个解码(上采样)路 径组成,如图1所示。为了提高模型的分割性能,我们开发了3 个缩小尺寸的残余卷积单元来取代传统的卷积层。3个卷积块 的图示可以在数据附录的图三中找到。3个减维残差卷积单元 有2个分支(主分支和侧分支)来连续处理输入特征。所有 的主分支都使用1×1卷积来降低维度。随后,3×3卷积层加入, 以深度提取特征。此外,为了避免由深度引起的梯度问题,在 降维结构的基础上开发了侧跳连接结构。降维过程可以描述如 下:在DR-UNet的编码路径中,图像被输入到块1中以降低维 度,然后由块2进行恢复。在DR-UNet的解码路径中,图像被 输入到第1块以减少尺寸,然后是第3块,然后通道的数量被 减少一半。此外,用指数线性单位
代替校正后的线性单位作为激活函数。
-
图1:降维联合网(DR-UNet)的架构。每个卷积块在主通道中包含3个卷积层,在侧通道中包含1个卷积层。在DR-UNet的编码路径中,卷积层使用1号块(黄色箭头)和2号块(红色 箭头),而在DR-UNet的解码路径中,卷积层使用1号块(黄色箭头)和3号块(绿色。
-
网络训练:DR-UNet的每一层都使用误差回溯法和自适应矩估计优化器 进行更新,这是一种随机的优化技术。矩估计的指数衰减率为 零,β1和β2分别为0.9和0.999。纪元数为50,每个纪元包含 1000个批次。倾斜率为0.0002。DR-UNet深度学习模型是使用 TensorFlow 2.0 beta框架和Keras32(v.2.1.2)开发的,所有 实验都是在拥有8GB内存的NVIDIA GeForce GTX 1070上 进行的。
-
二值化输出和分割性能:我们引入ICH图像的二进制值(血肿像素值为1,非血肿像素值 为0)来对血肿进行加权。为了评估血肿分割的性能,我们使 用了6个标准。Dice、Jaccard、体积重叠误差(VOE)、敏感性 、特异性和精确度。6,22 Dice得分是分割性能的一个重要指标( Dice∈[0,1])。如果是完美的分割,Dice=1。Jaccard指数,也 被称为 Jaccard 相 似 系 数 , 用 于 比 较 2 组 像 素 之 间 的 相 似 性 。 Jaccard越大,说明样本的相似度越高。VOE被定义为2组像素之 间的重叠体积的误差。VOE∈[0,1]是一个盛行的指标。如果是 完美分割,VOE=0。假设2组来自图像I1(标注真实)和I2( 分割)的 像 素 , Dice, Jaccard, 和 VOE 可以计 算 为 : Dice=(2|I_1∩I_2|)/(|I_1|+|I_2|),Jaccard=|(I_1∩I_2)/(I_1∪I_2)| ,和VOE=1-|(I_1∩I_2)/(I_1∪I_2)此外,我们定义真阳性(TP) 是指被分割方法预测为阳性像素的数量,假阴性(FN)是指被预 测为阴性像素的数量,真阴性(TN)是指被预测为阴性像素的阳 性像素的数量,而假阳性(FP)是指被预测为阳性像素的阴性 像素数量。在所有的方法中,人工分割标记被认为是标准。敏感 性[TP/(TP+FN)]衡量阳性像素(血肿像素)被分割的比例。特异 性[TN/(TN+FP)]测量阴性像素(非血肿像素)被分割的比例。精 确性[TP/(TP+FP)] 衡量分割的阳性像素与预测的阳性像素的比例 。TP是分割方法预测为阳性像素的数量,FN是预测为阴性像素的 数量,TN是预测为阴性像素的数量,FP是预测为阳性像素的数量 。在所有的方法中,人工分割标记被认为是标准。
-
估算患者的HVs:为血肿分割的输出预测是一个二进制图像(血肿像素值为1 ,非血肿像素值为0),所有非零像素的总和就是出血区每 一层的面积。然后,像素单位以毫米为单位进行点-英寸的 转换。最后,我们根据CT图像的自动边界分割计算出患者的 HVs,利用方程
计算患者的HV,其中T代表每层的厚度,N是层数,Sn是第n层的血肿面积。为了评估HV的估计性能,我们使用常见的均方根误差、SD和平均绝对误差(MAE )作为性能标准。24
-
统计分析:4种不同方法(DR-UNet、UNet、FCM和主动轮廓)的分割性能 用单因素方差分析,然后用Tukey多因素比较试验进行配对比较。 在外部测试数据集上,DR-UNet和UNet的分割性能使用非配对t 检验进行重新分析。使用Pearson相关系数和Bonferroni调整 的P来衡量DR-UNet、UNet和Coniglobus公式法得出的HV(mL )之间的成对相关性。使用非配对t检验来评估DR-UNet和UNet 在透视数据集中每个病人的容积分析时间。所有的统计分析都是 使用R25和GraphPad进行的。统计学意义被定义为P<0.05,所 有测试都是双尾的。
-
-
结果
-
健全的深度学习图像分割框架:本研究的目的是开发一个具有鲁棒性的深度学习图像分割模型,用于全自动分析ICH中的HVs。我们收集 了2017年1月至2018年12月在XZCH提供的512名患者 的12568张CT图像,并随后在2019年1月和2019年11 月在XZCH选择的50名患者的1257张切片上测试了我 们的模型的独立队列。我们使用12 568张带有血肿的 6854张CT图像来训练神经网络并建立深度学习分割(n=5000),验证(n=1000),和内部测试(n=854 )。前瞻性数据集中的1257张带有血肿的图像中,共 有392张图像被用来独立测试我们模型的性能(数据 附录中的图四)。 降维后的UNet(DR-UNet)模型的结构如图1所示 (详情见数据附录中的图三;数据附录中的扩展方法 )。对DR-UNet和UNet的网络深度和参数数量的比较进 行了总结(数据附录中的表四至表六)。DR-UNet的网 络深度增加到73层,比UNet多3倍。能够训练的参数数 量为31 114 305,不到UNet的三分之一。结果表明, 尽管DR-UNet分割模型更深,但它的计算量更少。这样一 来,DR-UNet可以提供一个更深的架构。 与UNet相比,感受野更大,速度更快。
-
DR-UNet模型准确检测血肿分割:我们首先训练DR-UNet来识别病人的血肿区域。使用 以下标准对2个测试数据集(内部和外部)的性能进行了 评估。(1)敏感性,(2)特异性,(3)精确度,(4)Dice。 (5) Jaccard, 和 (6) VOE (详情见方法部分)。此外,我们 将DR-UNet与UNet、8 FCM、12和主动轮廓线进行了比较 。13 在所有4种方法中,分割标记被认为是基础真理标 准(详情见方法部分)。主要的计算结果在图2中得到 了预示。图2A显示了DR-UNet模型和其他3种方法在两个测试数据集上对ICH进行分割和检测的方法的性能箱型图。DRUNet和UNet深度学习方法在各方面都表现出比FCM和主 动轮廓法更好的性能。在表1中,DR-UNet的Dice得分是 0.861±0.139,而FCM的Dice得分是0.861±0.139。 在 内 部 测试数 据 集 上 , UNet 为 0.833±0.167 。 DR-UNet 和UNet检测ICH的灵敏度为0.807±0.179,而内部测试 数据集为0.762±0.205。总的来说,DR-UNet在统计学上比 UNet有更好的表现,其特异性和特异性都很高,精度例外:特异性(敏感性,P<0.001;特异性,P=0.999 ;精度,P=0.999 ; Dice , P<0.05 ; Jaccard , P<0.01 ; VOE,P<0.05;1路方差分析检验;数据补充中的表七 )。在DR-UNet对内部测试数据集的训练和验证过程中, 我们从回顾性数据集的验证子集中选择了高灵敏度的操作 点,因为它能最大限度地提高ICH检测的灵敏度。使用这 个阈值,在前瞻性测试数据集中,DR-UNet检测ICH的 Dice分数为0.874±0.130,UNet为0.813±0.229(表1) 。在外部测试数据集上,DR-UNet模型取得了比UNet更 高的敏感性和特异性。此外,DR-UNet的各个方面都显 示出与UNet方法相当的性能,并具有统计学意义(敏感性 、特异性、精确性、Dice、Jaccard和VOE;P<0.0001; 非配对t检验;数据附录中表七)。
-
图2.通过降维UNet(DR-UNet)、UNet、模糊聚类法(FCM)和主动轮廓的分割结果。 A,内部测试和外部测试中4种方法的敏感性、特异性、精确性、Dice、Jaccard和体积重叠误差(VOE)的箱形图。B, 四个脑内出血(ICH)分割的 例子以及DR-UNet、UNet、FCM和主动轮廓的性能比较。红线表示输入的人工分割的ICH图像。分割结果集中在血肿区域,为 放大率。DR-UNet模型的分段输出用蓝线表示;UNet的分段输出用绿线表示;FCM的分段输出用黄线表示;主动轮廓的分段输出用青线表示。
- 回顾性数据集中的内部测试数据集被充实到包括所有 ICH亚型。在图2B中,包括了4种不同类型的血肿,我们 直观地展示了DR-UNet、UNet、FCM和主动轮廓线方 法之间的性能比较。在切片3中,我们的方法准确地进 行了分割,而UNet、FCM和主动轮廓线方法似乎都失败 了。在FCM的输出中,分割是完全错误的,侧脑室的前 角和体部被误判为血肿。此外,在似乎具有挑战性的第4 张切片中,我们的方法与标准的表现几乎一致(数据 补充中的图五)。
表1.内部测试和外部测试数据集中4种方法的灵敏度、特异度、精确度、Dice、Jaccard和VOE结果- DR-UNET对HV诊断的预测:我们使用相同的计算流程(数据补充中的图IV),使用CT血肿图像作为唯一的输入来预测HV。在外部测试数据集上使用3种不同的方法对性能进行评估:(1)DR-UNET,(2)UNET,和(3)Coniglobus公式方法。26以人工分割结果为标准。根据人工分割结果,将计算出的HV作为地面真实HV。在HV诊断中,检测是在病例级别进行的,不同于在切片级别进行的分割。
图3.通过降维UNet(DR-UNet)、UNet和Coniglobus方法进行 的血肿体积分析。A,血肿体积(HVs)的诊断由地面实况和DR-UNet、UNet和 Coniglobus方法呈现。B,DR-UNet、UNet和Coniglobus方法的误差曲 线。C,地面实况和DR-UNet、UNet和Coniglobus方法的相关图。 - 如图3A所示,从DR-UNet获得的HV值比UNet方法 获 得的HV 值 更 接 近 于 地 面 真 实值。 诊 所 中 使 用 的 Coniglobus公式预测的HV值通常比地面真实值大得多 。在图3B中,DR-UNet和人工诊断之间有很强的相关 性 ( R2=0.9958 [95% CI, 0.9963-0.9988]; P< 0.0001; Data Sup-plement中表八)。三种不同方法的误差曲线 图见图3C,统计分析见表2。用DR-UNet测量的均方 根误差、SD和MAE分别为3.885、38.233和2.564。与 UNet和Coniglobus公式相比,DR-UNet更可靠地预估 了HVs。此外,在这个外部测试数据集中,DR-UNet、 UNet和Coniglo- bus公式方法的平均容积分析时间分别 为 每 个 病 人 1.247 、 2.815 和 128 秒 。 DR-UNet 和 UNet 方法的容积分析时间有显著差异(P< 0.0001;数据补 充中的表九)。
- 对不同血肿病例的测试显示了DR-UNet的稳健性:ICH患者的HV诊断困难主要是由于血肿的位置和形状造 成的。在前瞻性数据集中,13名患者符合血肿形状III级 的标准,被认为是不规则形状的血肿,11名患者有硬膜 下和硬膜外血肿。为了评估模型的稳健性,不规则形状 的血肿组(n=13)和硬膜下及硬膜外血肿组(n=11) 分别用DR-UNet和UNet模型进行测试。测试是在血肿 分割的切片水平和HV检测的病例水平上进行的。在不规 则形状的血肿组中,DR-UNet和UNet的Dice和VOE平均 得分分别为0.863和0.839,0.182和0.247(数据附录中 表X)。对于HVs的预测,DR-UNet和UNet的均方根 误 差分别为5.8256 对 15.9807 , MAE 为 8.549 对 18.832。在硬膜下和硬膜外血肿组中,平均DR-UNet和UNet的Dice为0.806对0.763,平均VOE为 0.298对0.342,均方根误差为13.396对24.171,MAE 为9.707对13.163。在图4A和4B中,包括了不规则血 肿组和硬膜下和硬膜外血肿组的不同形状的血肿,我们 直观地展示了DR-UNet和UNet的perfor- mance比较(数 据附录中的图六和图七)。从上述结果中,我们发现硬膜 下和硬膜外血肿很难分割,不规则形状的HV也很难预 测。由于结构较深和较大的感受野,DR-UNet的性能比UNet的性能更强。 在不规则形状的血肿组以及硬膜下和硬膜外血肿组中 ,DR-UNet取得了比UNet更好的HV分割和预测性能。
图4不同血肿病例的血肿体积分析结果。 A组,不规则形血肿组。B组,硬膜下血肿组和硬膜外血肿组。人工分割的脑出血图像用红线表示,降维模型的分割输出用蓝线表示,降维模型的分割输出用绿线表示。 - 此外,前瞻性数据集中的50名患者根据HV被分为3 组。在这50名患者中,HV的最小值为1.47毫升,最 大值为181.37毫升(数据附录中表一)。在3个不同 的组别上测试了DR-UNet模型的性能(数据附录中的 表十)。3 组 的 Dice 评 分分别为0.890±0.127 、 0.860±0.141和0.860±0.119,分别是 显著。三组之间的分割准确性没有统计学意义(Dice, P=0.2496;VOE,P=0.0533;1-way ANOVA检验;数据 补充中的表XI)。根据分割的结果,在病例水平上对HV 的计算进行预测。通过DR-UNet测量血肿的MAE分别为 1.497、3.728和3.040。每组在HV预测方面与地面真实 没有统计学意义(<30 mL,P=0.5599;30-60 mL, P=0.2301;>60 mL,P=0.8968;非配对t检验;数据附 录中表XII).
- DR-UNET对HV诊断的预测:我们使用相同的计算流程(数据补充中的图IV),使用CT血肿图像作为唯一的输入来预测HV。在外部测试数据集上使用3种不同的方法对性能进行评估:(1)DR-UNET,(2)UNET,和(3)Coniglobus公式方法。26以人工分割结果为标准。根据人工分割结果,将计算出的HV作为地面真实HV。在HV诊断中,检测是在病例级别进行的,不同于在切片级别进行的分割。
- 讨论:
- 在这项研究中,我们开发了一种用于ICH中HV检测的鲁棒 性深度学习分割方法。DR-UNet是一个全卷积深度分割 网络,可以实现对输入图像数据的像素级分析。首先,在 模型结构方面,DR-UNet通过用降低维度的残差卷积单 元取代传统的卷积层,可以提供更深的模型结构,更大 的接受域,以及更少的可训练参数。DR-UNet的U形结 构提供了一个简单的网络和快速分割。其次,在模型性 能方面,DR-UNet对血肿区域的分割精度明显高于之前 的UNet和其他传统方法(Dice,0.861±0.139),与病 理学家的结果相当。此外,DR-UNet的HV分析具有明显 的准确性和速度(平均每个病人1.247秒)。通过内部和 外部的测试,我们验证了DR-UNET模型用于HV检测的可行性,实现了ICHs的准确快速计算。
- 近年来,深度学习技术被广泛应用于医学图像识别,如糖尿病视力视网膜病变、皮肤疾病、肺结节、颅内出血等领域。27-31在脑出血的CT影像诊断中,深度学习技术主要用于血肿的分类和检测,可以实现不同类型脑出血的CT图像,包括实质出血、硬膜外出血、硬膜下出血、脑室出血等多种类型的出血。已经做出了大量努力来根据脑CT图像得出准确和快速的方法(或模型)来预测临床血肿的形状和大小。7 HV结果预测的一个基本限制是很难在不同的数据集上获得稳健的分割性能。17这突显了缺乏一个可以从CT图像解释临床结果的统一机制,这仍然是临床应用的一个主要障碍。为了进一步评估DRUNet的稳健性,从前瞻性数据集中选择了11个硬膜下和硬膜外血肿和13个不规则血肿,这两个血肿都是很难分割的。在形状不规则的血肿组和硬膜下及硬膜外血肿组中,DR-UNET的血肿分割和HV预测性能较其他方法更准确、更快速、更稳定。此外,DR-UNET不受HV的位置和形状的影响,即使是小的HV也表现良好。
-
我们研究的局限性是,所有的ICH病例都是从一个机构收集的。尽管我们进行了广泛的测试,包括内部和外部测试以及特殊情况下的测试(不规则形状血肿组、硬膜下血肿组和硬膜外血肿组,以及3种不同的HV组),但DR-UNET的普适性仍需验证。数据量和质量之间的平衡以及为每个应用量身定制的仔细数据处理也是开发高性能深度学习算法的关键。7、32此外,还需要对基于HV预测的调整模块进行额外的优化和集成,以便将这些模块无缝嵌入临床工作流程。33最后,分割困难在很大程度上是由于血肿的位置和形状。计划进行进一步的研究,包括更大的受试者队列(形状不规则的血肿、硬膜下和硬膜外血肿),用于评估DR-UNET的稳健性和普适性。在未来,我们希望DR-UNET将在常规任务和疑难血肿病例中发挥作用,以帮助临床医生评估非常适合自动化分析的方面,并允许临床医生专注于更高级别的决策。
-
结论:
-
我们开发了一种稳健的深度学习分割方法DR-UNET用于ICH中的HV检测,与UNET和其他传统方法相比,该方法具有更准确、更快、更稳定的测量结果。由于在不同ICH上的强大性能,DR-UNET可以促进各种临床应用的深度学习系统的开发。
-
总结
【No.41】
训练的全卷积深度分割网络DR-Unet使用降低维度的残差卷积单元取代传统的卷积层,网络更深,感受野更大,参数量更小。分割精度优于之前的方法(Dice,0.861±0.139)。DR-UNet的HV(血肿体积)分析具有明显 的准确性和速度(平均每个病人1.247秒)
几个重要的点: