33. 搜索旋转排序数组
整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
示例 1:
输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0
输出:-1
提示:
1 <= nums.length <= 5000
-10^4 <= nums[i] <= 10^4
nums
中的每个值都 独一无二- 题目数据保证
nums
在预先未知的某个下标上进行了旋转 -10^4 <= target <= 10^4
进阶: 你可以设计一个时间复杂度为 O(log n)
的解决方案吗?
class Solution {
// 二分查找而已,但是要注意选择下落左边和右边时的条件
// 因为左边和右边都可能出现有序的情况,当只有明确哪边是有序的时候,才能确定范围。
// 不断地靠拢,最终长度会变成1的情况,或者直接找到。
public int search(int[] nums, int target) {
int low = 0, high = nums.length - 1, mid;
while(low <= high){
mid = (low + high) / 2;
// nums[0] <= nums[mid]说明左半边有序,范围是[nums[low], nums[mid]]
// 等号是因为存在左边只剩一个了的情况
if(nums[0] <= nums[mid]){
if(target == nums[mid]){
return mid;
}
// 如果目标就在左半边,等号是边缘的情况
if(nums[low] <= target && target <= nums[mid]){
high = mid - 1;
}
// 如果目标在右半边
else{
low = mid + 1;
}
}
// 右半边有序,范围是[nums[mid], nums[high]]
else {
if(target == nums[mid]){
return mid;
}
// 目标在右半边,等号是边缘的情况
if(nums[mid] <= target && target <= nums[high]){
low = mid + 1;
}
// 目标在左半边
else {
high = mid - 1;
}
}
}
return -1;
}
}