自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 Python提取连续的True作为新列表

Python提取连续True子序列。

2025-03-03 13:56:30 111

原创 pyqt5的tableWidget的一些参数设置

font = self.tablewidget.horizontalHeader().font() #实例化列表头的字体。self.tablewidget.horizontalHeader().setFont(font) #给列表头设置字体。font = self.tablewidget.verticalHeader().font() # 实例化行表头的字体。self.tablewidget.verticalHeader().setFont(font) # 给行表头设置字体。#给表头文本设置颜色。

2023-10-18 10:35:48 537

原创 MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment阅读笔记

1.论文中心思想训练深层次的神经网络需要大量的标签数据,然而收集大量的图像数据用于训练DCNNs是非常困难的,并且会耗费大量的时间。直接用少量的数据训练很容易造成过拟合,为了解决这个问题,现有的大量IQA算法都是在预训练网络模型上进行实验。然而这会导致泛化问题,主要原因是这些预训练模型不是针对IQA任务的。在现实情况下,人类可以很容易地从各种失真的图像中获取质量先验知识,并快速适应未知失真图像的质量评价,如图1所示。因此,在NR-IQA方法中,学习人类的共享先验知识是评价不同失真图像质量的关键。基于这种

2021-02-24 11:04:39 1084 4

原创 RankIQA: Learning from Rankings for No-reference Image Quality Assessment阅读笔记

1.论文中心思想利用网络判断两张图片的好坏2.网络架构3.网络实现流程1)进行数据增强:对同一张图片,由它产生出来的一系列失真图片的rank是已知的;2)将rankings形成两两组合,传入孪生网络,然后得到高级特征(可以认为是quality score)进行比较,计算出loss,然后反向传播,孪生网络loss则是利用了hinge loss,能够更容易准确地学习到rank,也就是大间隔分类损失(详细解释如下:由图片x1得到的质量分数y1,由图片x2得到的质量分数y2,若y1与y2的比较结果与它们

2021-02-24 10:15:34 488

原创 Deep Learning of Human Visual Sensitivity in Image Quality Assessment Framework阅读笔记

1.论文整体思想(1)图像质量评估是预测感知质量,在过程评估、图像和视频编码、监控等图像处理领域有着广泛应用。人体是图像和视频的最终接收者,因此在图像质量评估的度量应该考虑人体视觉系统,尤其是视觉敏感度。(2)传统的全参考图像质量评估(Full-Reference Image Quality Assessment, FR-IQA)方法根据心理视觉科学(Psychological Vision Science)对人体视觉系统进行建模。这些方法计算复杂度高,并且建立的模型需要符合事先定义的条件,泛化性能一般

2021-02-21 11:08:26 730

原创 Hallucinated-IQA: No-Reference Image Quality Assessment via Adversarial Learning阅读笔记

1.论文思想提出了通过GAN生成的伪参考图引导质量回归网络来解决无参考图像质量评价问题,文章强调的一点是生成网络和回归网络的互补互助,将两个网络结合在一起进行端到端的训练。2.网络架构网络共包括三部分:质量感知生成网络(G)、伪参考质量回归网络(R)、判别器(D)1)质量感知生成网络(G)总损失:LG = µ1Lp + µ2Ls + µ3LadvLp损失是参考图与GT的像素级误差(MSE),即Ls损失是特征空间质量感知误差,即其中,Lv是G的相关损失,Lq是R网络相关的损失(这样通

2021-02-20 10:44:26 597 4

原创 Blind Predicting Similar Quality Map for Image Quality Assessment阅读笔记

论文整体思路:借助一个网络对distorted image进行处理,生成出一个处理后的图用来辅助IQA的分数拟合。本文生成出来的是相似图(指distorted图像同reference图像之间的由某种方法获得的相似图,这些相似图可以表示出来图像质量下降的程度),计算IQA的时候直接将这个中间相似图输入IQA的网络得到分数。1.算法结构结构共有两部分:上半部分(红色部分)为生成网络,下半部分(蓝色部分)为质量池化网络。1)生成网络:FCNN的生成网络部分,网络结构是U-Net,4个下采样和对应的4个上采

2021-02-19 14:30:40 603 1

原创 Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper Network阅读笔记

一.真实失真图像的盲评是一大挑战,当前方法大多是关于合成数据集的,泛化能力差,因此本文提出一种自适应的超网络结构对真实的图像进行评价。图像质量评价算法在真实数据集上遇到如下三个挑战:1受限于真值图的获取;2真实数据集失真类型过多;3.真实数据集包含过多的图片内容。采用最初设计用于学习如何识别对象的网络体系结构来完成IQA的任务,存在两个缺点:第一,真实数据集失真大都存在于局部失真,而当前的深度模型大都学习的是全局失真,以至于模型预测的质量分数与人眼不一致。第二,没有在识别图片内容的基础上预测图片质量。基于上

2021-02-16 22:13:26 2056

原创 color transfer 算法文档简析

Reinhard于2001年在论文“color transfer between images”提出颜色迁移算法。其过程为:1.将参考图片和目标图片转换到LAB空间下2.得到参考图片和目标图片的均值和标准差3.对目标图片的每一个像素值,减去目标图像均值然后乘上参考图片和目标图片标准差的比值,再加上参考图像均值。具体公式解析如下:有一个重要的假设,图像灰度值的分布近似为高斯分布。我们将标准正态分布记为X,原图灰度值的正态分布记为Z1,目标图像灰度值的正态分布记为Z2。那么由概率统计正态分布公式:

2021-02-13 13:23:25 670

翻译 图像质量评估综述

背景介绍在过去的几十年里,由于质量评估(Quality Assessment,QA)在许多领域有其广泛的实用性,比如图像压缩、视频编解码、视频监控等,并且对高效、可靠质量评估的需求日益增加,所以QA成为一个感兴趣的研究领域,每年都涌现出大量的新的QA算法,有些是扩展已有的算法,也有一些是QA算法的应用。质量评估可分为图像质量评估(Image Quality Assessment, IQA)和视频质量评估(Video Quality Assessment, VQA),本文主要讨论图像质量评估。IQA从.

2021-01-11 10:19:23 2147

原创 YOLOV3训练验证测试历程

测试:./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_final.weights 01.jpg测试时出现

2020-09-22 18:00:16 570

转载 机器学习、监督学习、非监督学习、强化学习传统机器学习、深度学习、迁移学习基本概念

文章目录机器学习(machine learning)监督学习(supervised learning)非监督学习(unsupervised learning)强化学习(reinforcement learning)传统机器学习深度学习 (deep learning)迁移学习 (transfer learning)机器学习(machine learning)机器学习的主要任务:分类(classification):将实例数据划分到合适的类别中。回归(regression):主要用于预测数

2020-09-16 11:10:34 1854

原创 python爬虫--数据的存储和读取(CSV,EXCEL)

1.CSV格式得存储和读取(1)写入import csv# 需要写入的数据score1 = ['math', 95]score2 = ['english', 90]# 打开文件,追加a, newline="",可以删掉行与行之间的空格file= open("score.csv", "a", newline="")# 设定写入模式csv_write = csv.writer(file)# 写入具体内容csv_write.writerow(score1)csv_write.wri

2020-06-04 21:46:15 316

原创 python爬虫--多协程实战

1.爬取Hi运动得食物信息(热量,链接等),并保存在excel中# 导入所需的库和模块:from gevent import monkeyimport gevent,requests,bs4,openpyxl,timefrom gevent.queue import Queuefrom openpyxl import load_workbook,Workbook,worksheet#让程序变成异步模式monkey.patch_all()# 创建队列对象,并赋值给workwork = Qu

2020-06-02 17:43:37 308

原创 python爬虫--多协程

本文所有皆为单核CPU情况,多进程(多核CPU)有待学习1.爬取任务量较小时from gevent import monkey#从gevent库里导入monkey模块。monkey.patch_all()#monkey.patch_all()能把程序变成协作式运行,就是可以帮助程序实现异步。import geventimport timeimport requests#导入gevent、time、requests。start = time.time()#记录程序开始时间。url_

2020-06-02 16:24:58 314

原创 python爬虫--爬虫定时汇报

1.目标:自动爬取每日的天气,并定时把天气数据和穿衣提示发送到邮箱第一步:爬取信息import requestsfrom bs4 import BeautifulSoupheaders={'user-agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.87 Safari/537.36'}#封装headersurl='http:/

2020-06-02 12:25:36 976

原创 python数据分析7--图像处理

1.绘制双Y轴坐标系import pandas as pdfrom matplotlib import pyplot as pltfrom matplotlib import font_managermy_font = font_manager.FontProperties(fname='/data/course_data/data_analysis/STSONG.TTF',size=18)# 获取数据datas = pd.read_excel('/data/course_data/data_

2020-05-29 15:18:19 345

原创 python数据分析6--常见统计图

1.柱状图from matplotlib import pyplot as pltfrom matplotlib import font_managera = ['流浪地球','疯狂的外星人','飞驰人生','大黄蜂','熊出没·原始时代','新喜剧之王']b = [38.13,19.85,14.89,11.36,6.47,5.93]my_font = font_manager.FontProperties(fname='/data/course_data/data_analysis/STSON

2020-05-28 17:09:08 443

原创 python数据分析5--Matplotlib数据可视化

1.Matplotlib结构Matplotlib图像分成三层结构第一层:Canvas(画板)、Figure(画布,可以调节画布得大小和分辨率)、Axes(绘图区,一张画布上可以有多个绘图区,每一个绘图区都是一个独立得坐标系)第二层: 第二层是辅助显示层,主要包括axis(坐标轴)、spines(边框线)、grid(网格线)、legend(图例)、title(标题)等第三层:第三层为图像层,即通过plot、scatter等方法绘制的图像。from matplotlib import pyplot

2020-05-28 16:07:05 241

原创 python数据分析4--批量处理数据

1.数据的分组import pandas as pddf = pd.read_excel('/data/course_data/data_analysis/forbes_2018.xlsx')#df.group('X'),按照X进行分组group = df.groupby('gender')#group.size()可以返回每组的数量,并返回一个含有分组大小的Seriesfor gender,value in group.size().items(): # 计算每组的占比 acc

2020-05-27 22:50:15 841

原创 python数据分析3--数据的合并、筛选、排序

1.数据的合并inner取交集,outer取并集(1)利用contact()连接import pandas as pddict1={ 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3']}df1=pd.DataFrame(dict1)print(df1)dict2={ 'B': ['B0', 'B1', 'B2', 'B3'],

2020-05-27 20:23:24 1146

原创 python数据分析2--重复数据和空值处理

1.空值处理(1)基础知识文件的单元格中没有值时,在使用pandas读取后就会用NaN表示,也就是我们常说的空值,在NumPy模块中提供了nan的值,如果你想要创建一个空值,可以使用下方代码:from numpy import nan as NaNNaN比较特殊点就是其本身是一种float类型数据,当NaN可以参与到数据计算中,最终的结果却永远都是NaN。(2)过滤空值from numpy import nan as NaNimport pandas as pddf = pd.read_exc

2020-05-27 17:35:26 730

转载 python数据分析1--数据的读取与写入

一. python数据分析—数据的读取与写入1.数据写入到文件中进行永久性的保存,支持的文件格式有HTML、CSV、JSON、Excel2.csv的读写from pandas import Series,DataFrameimport pandas as pd# 使用字典创建index_list = ['001','002','003','004','005','006','007','008','009','010']name_list = ['李白','王昭君','诸葛亮','狄仁杰',

2020-05-27 15:58:13 405

原创 快速安装包

pip换源阿里云http://mirrors.aliyun.com/pypi/simple/中国科技大学https://pypi.mirrors.ustc.edu.cn/simple/  豆瓣(douban)http://pypi.douban.com/simple/  清华大学https://pypi.tuna.tsinghua.edu.cn/simple/  中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/...

2020-05-13 19:51:24 173

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除