笔记
babybabyC
这个作者很懒,什么都没留下…
展开
-
西瓜书 第五章神经网络笔记
connection weight 和 threshold—-参数 BP算法 aka误差逆传播算法 反向传播算法 BP算法应对过拟合的方法: early stopping regularization 局部最小&全局最小 (遗传算法) 一些常见的神经网络原创 2021-11-28 23:59:39 · 213 阅读 · 0 评论 -
西瓜书 第四章 决策树笔记
第四章 决策树 信息熵 首先引入信息熵information entropy的概念,来度量样本数据的纯度。数据越杂乱,则信息熵越高。 信息增益 接着引入信息增益的概念,与选择的属性a相关,即用属性a来进行原始数据的划分,如果可大幅降低了数据的杂乱程度,则信息增益大,选择属性a进行区分是很不错的选择。 增益率 防止由于属性a的取值数目过多而造成的计算出信息增益极大,影响属性的选择,将信息增益/属性a的一个固有值:depends on 属性a的取值数目,但需注意增益率会对取值数目少的属性有所偏好,因此C4.5算原创 2021-11-25 22:33:50 · 1036 阅读 · 0 评论 -
西瓜书 第三章 线性模型笔记
原创 2021-11-23 00:03:24 · 105 阅读 · 0 评论 -
西瓜书读书笔记Ch1-2
Ch1 绪论 监督学习:回归、分类 非监督学习:聚类 Ch2模型评估与选择 过拟合:不可避免,只能“缓解” 欠拟合:容易克服 查准率(precision)vs查全率(recall) 相等时称为平衡点BEP原创 2021-11-16 17:44:50 · 565 阅读 · 0 评论