算法竞赛进阶指南 - Coins(多重背包)

本文介绍了一种解决多重背包问题的方法,通过使用一个辅助数组sum来记录每种硬币出现的次数,有效地避免了时间复杂度过高的问题。核心在于利用动态规划的思想,在不超过给定总额的情况下尽可能多地组合出不同的金额。
摘要由CSDN通过智能技术生成

题意:有n种硬币,价值为Ai,每种Ci个。求在m以内能组成多少种金额。

这是一个多重背包问题,主要问题在于每种Ci个,很容易TLE。

因为比较简单,需要注意的要点就写在注释里了。

#include <iostream>
#include <vector>
#include <algorithm>
#include "string.h"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 9;
#define mem(x,i) memset(x,i,sizeof x)
bool dp[100010];
int sum[100010];
struct node{
    int c;
    int v;
}num[1001];
int main() {
//    freopen("in.txt","r",stdin);
//    freopen("out.txt","w",stdout);
    int n, m;
    while (cin >> n >> m && (n || m)) {
        mem(dp,0);
        for (int i = 1; i <= n; ++i) {
            scanf("%d",&num[i].v);

        }
        for (int i = 1; i <= n; ++i) {
            scanf("%d",&num[i].c);
        }
        dp[0] = true;
        int ans = 0;
        for (int i = 1; i <= n; ++i) {
            mem(sum,0);
            for (int j = num[i].v; j <= m; ++j) {
                if (!dp[j]&& dp[j-num[i].v] && sum[j-num[i].v] < num[i].c) //这个sum数组是代码
                //的核心,记录在第i件物品的循环中,出现了几次。这里解释一下,因为当我们找到了第一个
                //符合情况的数,比如dp[1]=1,dp[3]=0,恰好我们在循环的物品价值为2,我们可以
                //记录dp[3]=1,dp[5]=1依次类推,因为只有这种物品的价值是2,所以肯定是连续的
                //而sum正是是借助了这个原理,能够简单地统计这个物品到底出现了几次。
                {
                    sum[j] = sum[j-num[i].v]+1;
                    ans++;
                    dp[j] = true;
                }
            }
        }

        printf("%d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值