一. 市场、BD侧 (侧重拉新)
渠道侧拉新重点是分析产品调性及产品用户属性(产品定位、用户年龄喜好特征等),针对性进行广告投放和合作。
- 广告投放
举例:最右app-快乐大本营电视节目、网络视频合作等
核心:投放渠道用户与本身产品用户特征相似
数据分析:分渠道日均拉新数、分渠道用户质量(新客核心数据表现、活跃程度、留存率等)、人均获客成本、渠道拉新roi
目的:利用渠道转化漏斗优化渠道效率,评估出重点渠道来重点的持续投放运营 - 异业合作
举例:闲鱼-货拉拉、贝壳-货拉拉
方式:资源置换、发红包优惠券等、产业上下游合作 ,核心点在于合作双方目标用户重合度高或者形成链条(用户在贝壳租房->用货拉拉搬家)
数据分析:前期调研合作平台用户量,预估用户转化率,测算成本,用户转化漏斗,与合作平台的分成模型等。后期复盘转化效果,评估是否需要持续合作以及优化合作方式 - 线下曝光转化
举例:展会、社区
核心点:目前线上流量红利已过,线上投放成本较高,可以把目光适当向线下传统曝光模式转移,像目前社区曝光就是一个有效的线下方式
数据准备:预估参与活动人数、预估各环节转化率、预估物料量、活动后复盘活动效果
其他(搜索、小视频、kol、自媒体等 不详细赘述了)
**核心方法论:**冷启动阶段,小步快跑,采取实验的方式快速迭代并试错,快速找出可以持续运营的几个获客渠道重点投入。
二、运营、产品侧:(涉及:拉新+留存+召回)
- 产品优化
新客激活转化路径优化:利用用户漏斗分析流失点,优化新客触达产品核心功能的路径,提升新客次留
留存优化:留存率是虚荣指标,需要利用数据,分析高留存与低留存的用户的行为区别,找出影响留存的关键直接数据指标,然后通过策略、页面、功能等进行关键指标优化
举例:信息流产品留存下降,通过数据下钻方式,发现低留存用户比高留存用户人均展示及人均点击低很多,可以判定人均展示及人均点击为影响留存的核心指标,可以通过调整推荐策略,调整内容丰富度等方式进行人均展示、点击的指标优化,从而提升用户留存。(注意:留存是虚荣指标,一定要把留存拆分到具体的业务可以影响的直接指标上去,才会有一个较明确的发力点。以上以优化留存为例,别的指标也一样,逻辑上说是要拆分到具体可落地的直接指标上)
方式:通过数据分析及产品sense进行假设,然后用AB-test验证假设 - 运营策略
新客激活转化路径优化:利用用户漏斗分析流失点,优化新客触达产品核心功能的路径,提升新客次留
留存优化:留存率是虚荣指标,需要利用数据,分析高留存与低留存的用户的行为区别,找出影响留存的关键直接数据指标,然后通过策略、页面、功能等进行关键指标优化