2022-2-22第四章机器学习进阶EM算法

本文介绍了Jensen不等式在概率和统计中的核心作用,特别是在期望最大化(EM)算法中解决高斯混合模型(GMM)参数估计问题的过程。EM算法通过迭代更新逐步优化目标函数,最终达到局部最大值。首先,确定初始参数,然后在E步骤中计算期望值,接着在M步骤中最大化这些期望值来更新参数。整个过程沿着梯度上升,直至收敛。关键词涉及统计推断、概率论、机器学习和数据建模。
摘要由CSDN通过智能技术生成

基础知识

Jensen不等式
在这里插入图片描述
在这里插入图片描述
最重要是红框中的结论

EM算法解决的问题
在这里插入图片描述
在这里插入图片描述
GMM参数估计
在这里插入图片描述
在这里插入图片描述
第一步:
在这里插入图片描述
第二步:
在这里插入图片描述
在这里插入图片描述
按公式求各类参数,然后不断迭代

EM算法提出

在这里插入图片描述
Z是为观测数据,但是想要计算出z值
提出似然函数

在这里插入图片描述引入函数r作为辅助变函数

在这里插入图片描述在这里插入图片描述证明i取任意一个值不等式恒成立;Q作为z的某一个分布;
Log(E(X))>= E(logx)—jensen不等式

在这里插入图片描述取定值才有使上式相等的可能
给定一个z可以得到一个P—两者相关但不相等,那么在全z取完相加,可以得到一个条件概率

在这里插入图片描述

EM算法最终过程在这里插入图片描述 沿坐标轴不断上升,然后上升到局部最大值过程
E:只要给定参数,就可以求出概率定值

在这里插入图片描述M:
在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值