2022-2-22第四章机器学习进阶EM算法
本文介绍了Jensen不等式在概率和统计中的核心作用,特别是在期望最大化(EM)算法中解决高斯混合模型(GMM)参数估计问题的过程。EM算法通过迭代更新逐步优化目标函数,最终达到局部最大值。首先,确定初始参数,然后在E步骤中计算期望值,接着在M步骤中最大化这些期望值来更新参数。整个过程沿着梯度上升,直至收敛。关键词涉及统计推断、概率论、机器学习和数据建模。
本文介绍了Jensen不等式在概率和统计中的核心作用,特别是在期望最大化(EM)算法中解决高斯混合模型(GMM)参数估计问题的过程。EM算法通过迭代更新逐步优化目标函数,最终达到局部最大值。首先,确定初始参数,然后在E步骤中计算期望值,接着在M步骤中最大化这些期望值来更新参数。整个过程沿着梯度上升,直至收敛。关键词涉及统计推断、概率论、机器学习和数据建模。

被折叠的 条评论
为什么被折叠?