题目:
已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
- 若旋转
4次,则可以得到[4,5,6,7,0,1,2] - 若旋转
7次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [3,4,5,1,2] 输出:1 解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:
输入:nums = [4,5,6,7,0,1,2] 输出:0 解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。
示例 3:
输入:nums = [11,13,15,17] 输出:11 解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
提示:
n == nums.length1 <= n <= 5000-5000 <= nums[i] <= 5000nums中的所有整数 互不相同nums原来是一个升序排序的数组,并进行了1至n次旋转
解题思路:
这个题其实和之前写过的搜索旋转排序数组一样,只不过这个只需要一次二分查找,通过将最后一个值定义为最小值,每次判断当前的最小值和mid所在位置的值的大小关系,如果min比mid的值小说明当前最小的值应该在右半部分让left=mid+1否则就让right=mid-1
代码:
class Solution:
def findMin(self, nums: list[int]) -> int:
n = len(nums)
min_nums = nums[n-1]
left, right = 0, n-1
while left<=right:
mid = (left+right)//2
if min_nums<nums[mid]:
left = mid+1
else:
right = mid-1
min_nums = nums[mid]
return min_nums

372

被折叠的 条评论
为什么被折叠?



