集合论与图论(下)

概念:

零图:只有点没有边的图;

重边:两个节点不只有一条边;

线图:没有重边;

简单图:没有重边,没有环;

子图:新生成的图的点和边是原来图点和边的子集,如果两个图不同就是真子图;

生成子图:新生成的图点的个数和原来的图点的个数相同,但是边比原来的边少;

导出子图:新生成的图的点的集合是原来图的点的集合的子集,包含了与点相连的所有边;

边导出子图:边集合是原来集合的子集,包含所有与边相连的点;

无向完全图边数:n*(n-1)/2;

有向完全图:kn=n*(n-1);

补图:从完全图中删除相应的边;

度数deg(v):结点V关联的边数;(自环2次)

度数之和等于边数的2倍;

奇度顶点有偶数个;

简单无向图中,n个节点最多n-1度,如果有两个以上的n-1度结点则不可能有1度顶点;

同构:必要条件:1)结点数相同,2)边数相同,3)度数序列相同;

一个自补图必有4k或4k+1个结点;

通路:两个结点之间有路径;

通路长度:经过的边数;

回路:出发点和终点相同;

简单通路/回路:边不相同;

初级通路/回路:结点和边都不重复;

割点:删除此结点后就不连通;

割边:删除此边后就不连通;

最大度:G中最大度数;

最小度:G中最小度数;

点连通度:最少删去几个结点不连通;

边连通度:最少删去几个边就不连通;

强连通:任意两结点存在通路;

单向连通图:任意两结点至少有单向通路;

弱连通图(基图):去掉方向是连通的;

k-正则图:在一个无向简单图之中,如果每个节点的度数均为K,则称该图为k-正则图。显然完全图kn是(n-1)正则图。

树中边数=结点数-1;

度数之和等于边数的二倍;

任意非平凡树至少有两片树叶;

F有k个连通分支,m条边的n阶森林,m=n-k;

树叶:出度为0;

内点:入度为1,出度大于等于1;

特殊图

欧拉图

欧拉回路:经过每条边1次且仅1次的回路;

无向图中所有节点的度数为偶数

有向图中所有结点的入度=出度

欧拉通路:无向图中只有0个或者2个奇度顶点;

有向图中:(1)入度等于出度,(2)除两个结点外,所有结点入度等于出度,一个出度比入度大1,一个入度比出度大1;

哈密顿图

哈密顿图或哈密顿回路:经过每个结点1次且仅1次的回路;(带有割点就不是哈密顿图)

哈密顿通路:存在经过每个节点1次且仅1次的通路;

判断哈密顿图充分条件:

1、对于顶点个数大于2的图,如果图中任意两点度的和大于或等于顶点总数,那这个图一定是哈密顿图。但不满足不一定就不是哈密顿图;

2.若图的最小度不小于顶点数的一半,则图是哈密顿图;

3.若图中每一对不相邻的顶点的度数之和不小于顶点数,则图是哈密顿图。不满足不一定就不是;

4.m=(n-1)*(n-2)/2+2则一定是哈密顿图

判断哈密顿图必要条件:

  1. 删除k个节点,连通分支>k,则G必然不是哈密顿图

  1. 可以用两种颜色染色并且染色后顶点数不相同必然不是哈密顿图

  1. 有三个度数为1的顶点,则必然没有哈密顿路

由于用两种颜色染色后,1个结点数是8另一种颜色结点数是6所以不是哈密顿图

偶图(二部图)

图中所有回路长为偶数;

完全偶图km,n的边数是m*n,当m和n是偶数是,km,n是欧拉图;当m=n>1时,完全二部图是哈密顿图;

G是简单二部图,则m<=(n^2)/4

平面图

k5和k3,3是典型的非平面图,如果图中含有这两个图则一定不是平面图;

结论:

  1. 平面图有n个结点,m个边,r个面,则n-m+r=2;

  1. 若有k个连通分支,则n-m+r=k+1;

  1. 所有面次数之和等于边数的2倍;

  1. 若简单连通平面图有n(n大于等于3)个节点,m条边,则m<=3n-6;

  1. 若简单连通平面图有n(n大于等于3)个节点,m条边,每个面都是由4条及以上的边构成则m<=2n-4;

  1. 若简单连通平面图有n(n大于等于3)个节点,m条边,每个面都是由k条及以上的边构成则m<=k(n-2)/(k-2);

欧拉图

哈密顿图

二部图

平面图

k2,3

1

1

k3,3

1

1

k4

1

k5

1

1

km,n

m,n是偶数

m=n>1

1

m<3或n<3

kn

n为奇

n不等于2

n=2

n<5

习题:

第一讲:

同构不光要顶点数,边数相同,还要有相同的度数序列;

奇度顶点有偶数个;

第二讲:

  1. 3,1,1,1;

  1. 2,2,1,1;

  1. 2,2,2,2;

  1. 3,2,2,1;

  1. 3,3,2,2;

  1. 3,3,3,3;

由于度数之和等于边数的二倍,所以任何图(非零图)的度数之和一定是偶数;

如果图是一条直线,那么边数=结点数-1;

如果是一个完全图那么就不含有顶点度数为1;

如果是自补图,顶点数只能是4k或者是4k+1;

n*(n-1)=132可以解出来n=12,让这12个点作为完全图,任加一个点就是非连通图;

作为拓展处理出了直接选;

画图,一摸一样就是自补图;

第三讲:

存在欧拉闭迹就是指存在欧拉回路或者是欧拉图,判断每个点是否是偶度,如果不是则不存在欧拉闭迹;

找出图中奇度顶点的个数,对他们除二向下取整就是需要几笔才能画出;

只有A有奇度顶点并且有4个,4/2=2所以需要两笔完成;

A是欧拉图,一笔就可以完成;

B不是欧拉图,有2个奇度顶点至少一笔完成;

C不是欧拉图有4个奇度顶点至少两笔完成;

D有6个奇度顶点至少要三笔完成;

k4每个顶点度数为3是奇数所以不含有欧拉闭迹;

推论:kn存在欧拉闭迹的充分条件是n是奇数;

每个顶点度数是5所以不含有欧拉闭迹;

k3,3有6个奇度顶点所以至少需要3笔画成;

欧拉开迹就是指存在欧拉通路,那么含有0个或2个奇度顶点的图就存在欧拉开迹

第四讲:哈密顿图

其余几个图删去4个结点连通分支大于4

A不存在哈密顿路有割点

二部图只有m=n>1才是哈密顿图

用染色法一种颜色结点个数是7另一种是9不相等

染色法

直观判断每经过一个节点则删去该节点,无法回到起始

5个顶点每个顶点度数为2的图是哈密顿图但不满足

第五讲:图的表示、带权图

第六讲:树、割集

2个结点的树

只有根节点的树

第七讲:图的连通度

选最大的就完事了

第八讲:匹配问题

{1,2.....49,50}

有相异代表系就是在每个集合中选出一个元素,直到所有集合都能选出不同的元素

第九讲:平面图

第十讲:图的顶点着色问题

第十一讲:有向图的基本概念

应该选B答案有误

第十二讲:有根树、有序树、比赛图

二叉树左右结点形态不同

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值