[NOI Online #3 提高组] 水壶

本博客探讨了NOI Online #3 提高组的水壶问题,涉及容量无穷大的水壶和有限次操作。通过贪心策略,确定应该在每次操作中将水倒入下一个水壶以最大化能喝到的水量。利用前缀和技巧,可以高效地求解这个问题,以找出最大连续区间和,从而得出最多能喝到的水的单位数量。
摘要由CSDN通过智能技术生成

水壶

题目地址

题目描述:

有 n 个容量无穷大的水壶,它们从 1∼n 编号,初始时 i 号水壶中装有 Ai 单位的水。
你可以进行不超过 k 次操作,每次操作需要选择一个满足 1≤x≤n−1 的编号 x,然后把 x 号水壶中的水全部倒入 x+1 号水壶中
最后你可以任意选择恰好一个水壶,并喝掉水壶中所有的水。现在请你求出,你最多能喝到多少单位的水。

输入与输出

第一行一个正整数 n,表示水壶的个数。
第二行一个非负整数 k,表示操作次数上限。
第三行 n 个非负整数,相邻两个数用空格隔开,表示水壶的初始装水量 A1,A2,⋯,An。

一行,仅一个非负整数,表示答案。

数据范围与约定

对于 10% 的数据,满足 1≤n≤10。
对于 30% 的数据,满足 1≤n≤100。
对于 50% 的数据,满足 1≤n≤103。
对于 70% 的数据,满足 1≤n≤105。
对于 100% 的数据,满足 1≤n≤106,0≤k≤n−1,0≤Ai≤103 。

思路:

1.先弄清楚题目的意思,再寻找合适的算法。对于这道题来说,题意很简单,我们先想象这样一个场景:一条线上,一排罐子,罐子中装着数量不相等的水。
2.题目规定了一次操作,将1≤x≤n−1这个区间内的任意一个罐子x的所有水都倒进它右边一个罐子x+1里.所以,对于每一个罐子而言,它增加的水只能是它左边一位的罐子倒的,所以有: a [ x ] = a [ x − 1 ] + a [ x ] , a [ x − 1 ] = a [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值