水壶
题目描述:
有 n 个容量无穷大的水壶,它们从 1∼n 编号,初始时 i 号水壶中装有 Ai 单位的水。
你可以进行不超过 k 次操作,每次操作需要选择一个满足 1≤x≤n−1 的编号 x,然后把 x 号水壶中的水全部倒入 x+1 号水壶中。
最后你可以任意选择恰好一个水壶,并喝掉水壶中所有的水。现在请你求出,你最多能喝到多少单位的水。
输入与输出
第一行一个正整数 n,表示水壶的个数。
第二行一个非负整数 k,表示操作次数上限。
第三行 n 个非负整数,相邻两个数用空格隔开,表示水壶的初始装水量 A1,A2,⋯,An。
一行,仅一个非负整数,表示答案。
数据范围与约定
对于 10% 的数据,满足 1≤n≤10。
对于 30% 的数据,满足 1≤n≤100。
对于 50% 的数据,满足 1≤n≤103。
对于 70% 的数据,满足 1≤n≤105。
对于 100% 的数据,满足 1≤n≤106,0≤k≤n−1,0≤Ai≤103 。
思路:
1.先弄清楚题目的意思,再寻找合适的算法。对于这道题来说,题意很简单,我们先想象这样一个场景:一条线上,一排罐子,罐子中装着数量不相等的水。
2.题目规定了一次操作,将1≤x≤n−1这个区间内的任意一个罐子x的所有水都倒进它右边一个罐子x+1里.所以,对于每一个罐子而言,它增加的水只能是它左边一位的罐子倒的,所以有: a [ x ] = a [ x − 1 ] + a [ x ] , a [ x − 1 ] = a [