爬取大众点评网的某城市美食店铺数据


前言

某旅游城市在今年的十一期间再次火爆了一把,城市的各种美食确实让人垂涎欲滴。因此,个人萌生了爬取该城市美食店铺信息的想法。

一、确定爬取的url

1.首先用浏览器打开大众点评网站www.dianping.com,然后点击城市链接 ,再点击美食链接进入城市美食页面。
地址为:http://www.dianping.com/changsha/ch10/p0
2.改变页码,发现只有最后的px会发生变化。因此,只需要简单构建循环即可构造url地址。

二、开始抓取

1.直接抓取

查看网页源代码,发现可以搜索到网页中存在的信息,因此基本可以确定是静态网页。
在这里插入图片描述

仅仅添加useragent直接进行抓取后,发现出现了302状态码进行了跳转。这种情况下,应该是需要增加请求头信息。

2.构造请求头

1.查看网页请求头如下图!
请求头

几次刷新页面后发现,改变的数据仅仅是cookie,其它请求头信息均为固定信息。每次cookie均发生了改变,但是并没有进行两次加载,说明cookie信息应该是本地生成的。cookie信息中有两项信息会发生改变,
在这里插入图片描述
其中,_lxsdk_s每次的改变很有规律,为最后两位数加20或者21(具体是20还是21自己可以刷新几次看一下)。但是另一项就比较复杂,看起来像是时间戳,但是尝试后发现并不是。既然是本地生成的,那么查看js应该可以看到生成方式,个人尝试了一下,无奈js能力有限。
但是,既然是本地生成的,那么我们可以进行分析,在浏览器和页面内容均没有发生改变的情况下,改变的只有加载时间,我们可以大胆猜测这个数据还是和时间有关系。而且response headers中还有一项Set-Cookie,里面的数据仅有时间在发生改变,基本可以确认Hm_lpvt的改变是由时间引起的。

17-Nov-2022 07:22:07 GMT     1605596557
17-Nov-2022 07:31:29 GMT     1605597742
17-Nov-2022 07:31:59 GMT     1605598305

如图,查看几次请求信息,最后观察到每一次的Hm_lpvt的改变量为前次请求的时间间隔,其实也就是每次请求的Hm_lpvt信息,实际上是与上一次请求时间以及第一次请求时间相关的。
那么我们可以就此构造cookie。考虑到万一某次请求出现问题方便再次构造cookie,因此本人将构造cookie需要的三项数据写入txt文件,每次进行读取和写入操作。

`def get_cookie():
    new = """fspop=test; _lxsdk_cuid=175a63b9732c8-045b6a35f56618-230346d-1fa400-175a63b9733c8; _lxsdk=175a6
    3b9732c8-045b6a35f56618-230346d-1fa400-175a63b9733c8; _hc.v=500ca2b8-99ea-2512-79b9-579fd5ee6aab.1604811726; s_View
    Type=10; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; cy=344; cye=changsha; _dp.ac.v=136a299d-309b-401a-93d4-
    15565e9b3ec9; ua=dpuser_8849637005; ctu=6785bc81e314ca567cbe3eeabeca236ead9ce92b79a054a5ce52c4d63f36ce8d; Hm_lvt_60
    2b80cf8079ae6591966cc70a3940e7=1604811726,1604835093,1604897708; _lxsdk_s=175ab5b8dc6-68-5d-822%7C%7C{}; Hm_lpvt_60
    2b80cf8079ae6591966cc70a3940e7={}
    """
    with open("cookie.txt", 'r') as f:
        for line in f.readlines():
            time_cookie = json.loads(line)
   #将时间转换成字符串
    timearray1 = time.strptime(time_cookie[1]['time'], "%Y-%m-%d %H:%M:%S")
    timearray0 = time.strptime(time_cookie[0]['time'], "%Y-%m-%d %H:%M:%S")
   #求前两次的时间差
    timedelta = int(time.mktime(timearray1)) - int(time.mktime(timearray0))
   #构造新的cookie需要的数据
    new_cookie = time_cookie[1]['cookie'] + timedelta
    timearray = time.localtime(int(time.time()))
    new_time = time.strftime("%Y-%m-%d %H:%M:%S", timearray)
    new_num = time_cookie[1]['num'] + 20
   #将新的cookie存入文件,并删除第一项cookie
    time_cookie.append({
   'time':new_time, 'cookie':new_cookie,'num' : new_num})
    time_cookie.pop(0)
    cookie_json = json.dumps(time_cookie)
    with open("cookie.txt", 'w', ) as f:
        f.write(cookie_json)
    return new.format(str(new_num), str(new_cookie))
cookie =get_cookie()

构造cookie后再次进行请求,果然,请求成功。

3.抓取信息

为了方便分析页面内容,因此将网页保存在了本地。在此仅进行了店铺名称,店铺得分,店铺评论数和人均消费信息的抓取。使用了pyquery和re模块进行网页解析。
代码如下:

with open('dianping.html', 'r', encoding='utf-8') as f:
    b = ''
    for line in f.readlines():
        b += line
doc = pq(b)
shop_items = doc('#shop-all-list'<
### 使用Python编写爬虫程序从大众点评网获取美食店铺数据 #### 准备工作 为了成功抓取大众点评网站上的美食店铺数据,准备工作至关重要。确保安装了最新版本的 Python 和 Scrapy 框架[^3]。 ```bash # 更新pip至最新版 python -m pip install --upgrade pip # 安装Scrapy库 pip install scrapy ``` #### 创建Scrapy项目 创建一个新的 Scrapy 项目用于存储所有的代码文件和配置项: ```bash scrapy startproject dianping_spider cd dianping_spider ``` #### 配置中间件规避反爬机制 考虑到大众点评存在较为严格的反爬措施,在 `settings.py` 中设置合理的请求头以及启用随机User-Agent插件来模拟正常浏览器访问行为,提高成功率[^1]: ```python USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ROBOTSTXT_OBEY = False DOWNLOAD_DELAY = 2 RANDOM_UA_PER_PROXY = True DOWNLOADER_MIDDLEWARES = { 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, } ``` #### 开发具体Spider逻辑 定义具体的 Spider 类继承自 `scrapy.Spider`, 并实现解析页面的方法 `_parse()` 来提取所需字段如店名、评分等信息[^2]: ```python import scrapy from ..items import DianpingItem class ShopSpider(scrapy.Spider): name = "shops" allowed_domains = ["dianping.com"] start_urls = ['http://www.dianping.com/search/category/1/10'] def parse(self, response): items = [] for sel in response.xpath('//div[@id="shop-all-list"]/ul/li'): item = DianpingItem() try: item['name'] = sel.css('.txt>.tit h4::text').extract_first().strip() item['score'] = float(sel.css('.sml-rank-stars::attr(class)').re(r'\d+\.\d+')[0]) yield item except Exception as e: print(e) next_page_url = response.css('a.NextPage::attr(href)').get() if next_page_url is not None: yield scrapy.Request(response.urljoin(next_page_url)) ``` 此段代码通过 XPath 表达式定位 HTML 文档中的特定节点,并从中抽取文本内容作为最终结果的一部分;同时处理分页情况下的链接跳转问题以遍历多页列表。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值