【Spark】Spark Shuffle 原理

  今天学习 Spark Shuffle。昨天文章提到了 Spark 划分 stage 时,分为了 ShuffleMapStage 和 ResultStage。没看过的可以看昨天的文章。

【Spark】Spark 任务调度

在这里插入图片描述

在划分 stage 时:

  • 前面的所有 stage 被称为 ShuffleMapStage。ShuffleMapStage 的结束伴随着 shuffle 文件的写磁盘。
  • 最后一个 stage 称为 finalStage,它本质上是一个 ResultStage 对象,ResultStage 对应代码中的 action 算子,将一个函数应用在 RDD 的各个 partition 的数据集上,意味着一个 job 的运行结束。

下面讲 Spark 的两种 Shuffle。

1.HashShuffle

1.1 未优化的 HashShuffle

假设每个 Executor 只有 1 个 CPU core,无论这个 Executor上分配多少个 Task 线程,同一时间都只能执行一个 Task 线程。例如 3 个 Reducer,具体过程如下:

  • 在 Task 中进行 Hash 计算,分区器计算分区(hash 值 % num_reduce,这里是 3),得到 3 个不同的分区(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值