用iodraw画方框图遇到的问题

1、中文字体如何添加
参见链接https://blog.csdn.net/u012028275/article/details/118875134?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-5-118875134-blog-108397301.pc_relevant_antiscanv4&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-5-118875134-blog-108397301.pc_relevant_antiscanv4&utm_relevant_index=6
2、导出的问题
参数的选取,方便将图片复制到word中
①第一步
在这里插入图片描述
②第二步
在这里插入图片描述

### 使用 PySOT 绘制边界框可视化图表 为了使用PySOT框架为测试数据集绘制边界框(Bounding Box)的可视化图表,可以遵循以下方法: #### 准备工作 确保已经安装并配置好了PySOT环境。如果尚未完成此操作,则需先按照官方文档指导设置好开发环境。 #### 加载预训练模型与测试数据集 加载预先训练好的跟踪模型以及准备用于评估的数据集。这一步骤通常涉及读取视频帧或图片序列,并准备好对应的标注文件以便后续对比验证效果[^1]。 ```python from pysot.utils.bbox import get_axis_aligned_bbox import cv2 # 假设已有一个初始化后的tracker对象和image_path列表 for frame_num, image_file in enumerate(image_paths): img = cv2.imread(image_file) # 对于第一个frame,获取初始bbox位置 if frame_num == 0: gt_bbox = ... # 获取ground truth bbox的方式取决于具体数据集格式 cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox)) tracker.init(img, gt_bbox) ``` #### 进行目标检测并保存结果 利用`tracker.track()`函数逐帧追踪目标物体,在每一轮迭代中更新当前的最佳估计边界框坐标。同时记录下每次预测的结果以供后期分析使用。 ```python output_boxes = [] for idx, im in enumerate(images): outputs = tracker.track(im) res = cxywh2ltwh(outputs['bbox']) output_boxes.append(res) # 可视化部分 lt, rt, rb, lb = tuple(map(int, res[:4])) cv2.rectangle(im, (lt, rt), (rb, lb), color=(0, 255, 0), thickness=2) cv2.putText(im, f'Frame {idx}', org=(lt + 10, rt - 10), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.8, color=(0, 255, 0), thickness=2) ``` 上述代码片段展示了如何在每一帧图像上出绿色矩形表示预测的目标区域,并附带简单的文字说明指出这是哪一帧的面。 #### 结果展示 最后可以通过OpenCV或其他图形界面工具包将带有标记的信息显示出来,也可以进一步导出成GIF动图等形式分享研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值