多变量线性回归练习

读取数据+特征归一化
在这里插入图片描述
mean是均值

在这里插入图片描述
在这里插入图片描述
将特征大小控制在 -1~1之间

房屋的面积对价格的影响
在这里插入图片描述

卧室数量对价格的影响
在这里插入图片描述

损失函数

def costFunction(X,y,theta):
inner =np.power(X@theta-y,2)
return np.sum(inner)/(2*len(X))
在这里插入图片描述

梯度下降

在这里插入图片描述

def gradientDescent(X,y,theta,alpha,iters):
    costs = []
    
    for i in range(iters):
        theta = theta - (X.T @ (X@theta - y) ) * alpha / len(X)
        cost = costFunction(X,y,theta)
        costs.append(cost)
        
        if i % 100 == 0:
            print(cost)
            
    return theta,costs
在使用TensorFlow 2进行线性回归练习时,我们首先需要导入所需的库,包括TensorFlow和NumPy。 接下来,我们可以定义输入数据和目标变量。假设我们有一组输入数据X和对应的目标变量y,我们可以使用NumPy创建这些数据。 然后,我们需要创建模型。在线性回归中,模型是一个线性方程,可以通过TensorFlow的密集层(Dense)来实现。我们可以使用Sequential模型来创建一个简单的线性模型,并添加一个密集层。 接下来,我们需要定义优化器和损失函数。对于线性回归问题,我们可以使用均方误差(Mean Squared Error, MSE)作为损失函数,并选择合适的优化器,如随机梯度下降(SGD)。 然后,我们可以使用compile()方法编译模型,指定优化器和损失函数。编译模型后,我们可以使用fit()方法来拟合模型。通过指定输入数据和目标变量,以及训练的批次大小和训练的迭代次数,可以在训练集上训练模型。 在训练完模型后,我们可以使用evaluate()方法评估模型在测试集上的性能。 最后,我们可以使用predict()方法对新的数据进行预测。通过将新的输入数据传递给predict()方法,可以得到对应的目标变量的预测值。 综上所述,使用TensorFlow 2进行线性回归练习可以分为以下步骤:导入库、定义输入数据和目标变量、创建模型、定义优化器和损失函数、编译模型、拟合模型、评估模型性能、预测新的数据。通过完成这些步骤,我们可以进行线性回归练习,并得到模型在给定数据上的预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半岛铁盒@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值