- 博客(6)
- 收藏
- 关注
原创 SVM(硬间隔)
支持向量机,在深度学习还没出来之前是一个很流行的判别模型,它要解决的问题很简单,如图:算法
EM是常用的估计参数隐变量的利器。他的思路很简单:记住三个变量:θ:初始值**Z:**隐变量X:已知的观测到的变量下面我们用一个例子介绍一下EM算法:一个非常简单的例子假设现在有两枚硬币1和2,,随机抛掷后正面朝上概率分别为P1,P2。为了估计这两个概率,做实验,每次取一枚硬币,连掷5下,记录下结果,如下:还是上面的问题,现在抹去每轮投掷时使用的硬币标记,如上所示。此 时 我 ...
2020-04-25 20:35:12
308
原创 再说说朴素贝叶斯
朴素贝叶斯又到了更新博客的时间了,今天跟大伙聊聊朴素贝叶斯,贝叶斯公式大伙都知道,它长得是这个样子:用汉字表示为分母P(x):是全概率公式.分子P(x|c):表示在c条件下x发生的概率,称之为条件概率。P©:可以理解为先验概率,样本空间中各类样本所占的比例,可通过各类样本出现的频率估计(大数定理)由于我们的训练的数据中,x的类别有很多种,所以P(x|c)这个条件概率公式可以写成下面...
2020-04-23 20:19:10
141
原创 话说线性回归
话说线性回归**近期参加了一个活动,要按时写博客,否则9.9RMB就木有了啊。这次我写的是线性回归:这个万物都可拟合的模型,其实在高中数学就提到了,只是在高考中占比很小,考的概率也微乎其微,所以重视的不多。那什么是线性回归呢?说白了就是预测。就拿达叔视频的例子:预测房价,影响房价的因素有很多:包括面积,房价,地段等等。我们将这些因素作为参数,就可以得到一个表达式:我们的目标是要找到一个函数法...
2020-04-21 21:05:28
305
原创 prim算法之处女作
Prim算法代码实现求无向网的最小生成树的算法有两种:Prim和Kruskal,它们都是利用最小生成树的MST性质得到的。我们先来介绍Prim算法,Kruskal我们后续介绍。Prim算法思想:逐渐长成一棵最小生成树。假设G=(V,E)是连通无向网,T=(V,TE)是求得的G的最小生成树中边的集合,U是求得的G的最小生成树所含的顶点集。初态时,任取一个顶点u加入U,使得U={u},TE=Ø...
2019-12-05 17:26:48
159
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人