由浅入深一文详解同余原理

同余原理是数论中一个基础且重要的概念,它为我们研究整数之间的关系提供了独特的视角和强大的工具,在数学、计算机科学、密码学、信息安全等实际应用中发挥着关键作用。本文我将深入探讨同余原理的基本概念、性质、运算规则以及实际应用,带你全面理解这一重要原理,废话不多说直接发车。

一、同余原理的基本概念

1.1 同余的定义

给定一个正整数 m m m,如果两个整数 a a a b b b 满足 a − b a - b ab 能够被 m m m 整除,即 ( a − b ) ÷ m (a - b) \div m (ab)÷m 的结果是整数,那么就称整数 a a a b b b 对模 m m m 同余,记作 a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm)。其中, m m m 称为模, ≡ \equiv 是同余符号 。例如,因为 17 − 5 = 12 17 - 5 = 12 175=12 12 12 12 能被 6 6 6 整除,所以可以表示为 17 ≡ 5 ( m o d 6 ) 17 \equiv 5 \pmod{6} 175(mod6);再如 25 − 10 = 15 25 - 10 = 15 2510=15 15 15 15 能被 5 5 5 整除,即 25 ≡ 10 ( m o d 5 ) 25 \equiv 10 \pmod{5} 2510(mod5)

从直观上理解,同余表示两个整数在除以同一个模 m m m 时,具有相同的余数。例如, 17 ÷ 6 = 2 ⋯ ⋯ 5 17 \div 6 = 2\cdots\cdots5 17÷6=2⋯⋯5 5 ÷ 6 = 0 ⋯ ⋯ 5 5 \div 6 = 0\cdots\cdots5 5÷6=0⋯⋯5,它们除以 6 6 6 的余数都是 5 5 5,这也是同余的另一种等价理解方式。

1.2 剩余类与完全剩余系

  • 剩余类:对于给定的模 m m m,所有与整数 a a a 同余的整数构成的集合,称为 a a a 关于模 m m m 的剩余类,记作 [ a ] m [a]_m [a]m。例如,对于模 3 3 3 [ 0 ] 3 = { ⋯   , − 3 , 0 , 3 , 6 , ⋯   } [0]_3 = \{ \cdots, -3, 0, 3, 6, \cdots \} [0]3={,3,0,3,6,} [ 1 ] 3 = { ⋯   , − 2 , 1 , 4 , 7 , ⋯   } [1]_3 = \{ \cdots, -2, 1, 4, 7, \cdots \} [1]3={,2,1,4,7,} [ 2 ] 3 = { ⋯   , − 1 , 2 , 5 , 8 , ⋯   } [2]_3 = \{ \cdots, -1, 2, 5, 8, \cdots \} [2]3={,1,2,5,8,}。每个剩余类中的任意两个整数都对模 m m m 同余,并且整数集可以被划分为 m m m 个互不相交的剩余类。

  • 完全剩余系:从模 m m m 的每个剩余类中各取一个整数,得到的由 m m m 个整数组成的集合,称为模 m m m 的一个完全剩余系。例如,对于模 4 4 4 { 0 , 1 , 2 , 3 } \{0, 1, 2, 3\} {0,1,2,3} 是一个完全剩余系, { 4 , 5 , 6 , 7 } \{4, 5, 6, 7\} {4,5,6,7} 同样也是模 4 4 4 的一个完全剩余系 。

二、同余原理的基本性质

2.1 自反性

对于任意整数 a a a 和正整数 m m m,都有 a ≡ a ( m o d m ) a \equiv a \pmod{m} aa(modm)。这是因为 a − a = 0 a - a = 0 aa=0 0 0 0 能被任何正整数 m m m 整除,所以一个整数自身必然与自身对模 m m m 同余。

2.2 对称性

a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm),则 b ≡ a ( m o d m ) b \equiv a \pmod{m} ba(modm)。因为 a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm) 意味着 a − b a - b ab 能被 m m m 整除,那么 b − a = − ( a − b ) b - a = -(a - b) ba=(ab) 也能被 m m m 整除,所以 b b b a a a 对模 m m m 同余。

2.3 传递性

a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm) b ≡ c ( m o d m ) b \equiv c \pmod{m} bc(modm),则 a ≡ c ( m o d m ) a \equiv c \pmod{m} ac(modm)。由 a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm) 可得 a − b = k m a - b = km ab=km k k k 为整数),由 b ≡ c ( m o d m ) b \equiv c \pmod{m} bc(modm) 可得 b − c = l m b - c = lm bc=lm l l l 为整数),那么 a − c = ( a − b ) + ( b − c ) = ( k + l ) m a - c = (a - b) + (b - c) = (k + l)m ac=(ab)+(bc)=(k+l)m,即 a − c a - c ac 能被 m m m 整除,所以 a a a c c c 对模 m m m 同余。

2.4 加减性

a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm) c ≡ d ( m o d m ) c \equiv d \pmod{m} cd(modm),则 a + c ≡ b + d ( m o d m ) a + c \equiv b + d \pmod{m} a+cb+d(modm) a − c ≡ b − d ( m o d m ) a - c \equiv b - d \pmod{m} acbd(modm)。因为 a − b = k m a - b = km ab=km c − d = l m c - d = lm cd=lm,所以 ( a + c ) − ( b + d ) = ( a − b ) + ( c − d ) = ( k + l ) m (a + c) - (b + d) = (a - b) + (c - d) = (k + l)m (a+c)(b+d)=(ab)+(cd)=(k+l)m ( a − c ) − ( b − d ) = ( a − b ) − ( c − d ) = ( k − l ) m (a - c) - (b - d) = (a - b) - (c - d) = (k - l)m (ac)(bd)=(ab)(cd)=(kl)m,都能被 m m m 整除。

2.5 乘性

a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm) c ≡ d ( m o d m ) c \equiv d \pmod{m} cd(modm),则 a c ≡ b d ( m o d m ) ac \equiv bd \pmod{m} acbd(modm)。将 a = b + k m a = b + km a=b+km c = d + l m c = d + lm c=d+lm 代入 a c − b d ac - bd acbd 可得: a c − b d = ( b + k m ) ( d + l m ) − b d = b d m + b l m 2 + k d m + k l m 2 ac - bd = (b + km)(d + lm) - bd = bdm + blm^2 + kdm + klm^2 acbd=(b+km)(d+lm)bd=bdm+blm2+kdm+klm2,显然 a c − b d ac - bd acbd 能被 m m m 整除。

2.6 幂性

a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm),那么对于任意正整数 n n n,有 a n ≡ b n ( m o d m ) a^n \equiv b^n \pmod{m} anbn(modm)。可以通过乘性进行递推证明,当 n = 1 n = 1 n=1 时显然成立,假设 a k ≡ b k ( m o d m ) a^k \equiv b^k \pmod{m} akbk(modm),由乘性可得 a k + 1 = a k ⋅ a ≡ b k ⋅ b = b k + 1 ( m o d m ) a^{k + 1} = a^k \cdot a \equiv b^k \cdot b = b^{k + 1} \pmod{m} ak+1=akabkb=bk+1(modm)

三、同余原理的运算与应用

3.1 同余运算在计算中的应用

同余运算可以简化复杂的数值计算。例如,计算 2345 × 6789   m o d   11 2345 \times 6789 \bmod 11 2345×6789mod11,如果直接计算 2345 × 6789 2345 \times 6789 2345×6789 再取模,计算量较大。利用同余的乘性,先分别计算 2345   m o d   11 = 1 2345 \bmod 11 = 1 2345mod11=1 6789   m o d   11 = 5 6789 \bmod 11 = 5 6789mod11=5,然后计算 1 × 5   m o d   11 = 5 1 \times 5 \bmod 11 = 5 1×5mod11=5,这样就大大简化了计算过程。

3.2 密码学中的应用

同余原理在密码学中有着广泛的应用,例如在 RSA 加密算法中,同余运算起到了核心作用。RSA 算法基于大整数分解的困难性,通过同余运算实现加密和解密过程。在加密时,利用同余的幂性对明文进行运算得到密文;解密时,同样依据同余原理进行反向运算恢复明文 。

3.3 日期与周期问题

在处理日期和周期相关的问题时,同余原理也非常有用。例如,已知今天是星期一,求 100 100 100 天后是星期几。一周有 7 7 7 天,以 7 7 7 为模, 100   m o d   7 = 2 100 \bmod 7 = 2 100mod7=2,因为今天是星期一,经过 100 100 100 天相当于在星期一的基础上再过 2 2 2 天,所以 100 100 100 天后是星期三。

四、案例分析:快速幂取模

问题描述

计算 a b m o d    m a^b \mod m abmodm 的值,其中 a a a b b b 是非常大的整数(例如 b b b 10 5 10^5 105 级别的指数),直接计算 a b a^b ab 会导致数值溢出或计算效率低下。利用同余原理的幂性模运算性质,可以高效地求解该问题。

核心原理

根据同余的幂性:若 a ≡ c ( m o d m ) a \equiv c \pmod{m} ac(modm),则 a b ≡ c b ( m o d m ) a^b \equiv c^b \pmod{m} abcb(modm)
结合快速幂算法(二分法),将指数 b b b 分解为二进制位,通过不断平方并取模,避免大数运算。

代码实现:快速幂取模算法

以下代码均实现 f ( a , b , m ) = a b m o d    m f(a, b, m) = a^b \mod m f(a,b,m)=abmodm,适用于大数场景。

Python实现
def fast_pow_mod(a, b, m):
    result = 1
    a = a % m  # 先对底数取模,避免初始值过大
    while b > 0:
        if b % 2 == 1:
            result = (result * a) % m  # 奇数指数时乘入结果
        a = (a * a) % m  # 底数平方并取模
        b = b // 2  # 指数减半
    return result

# 示例:计算 3^100 mod 7
a = 3
b = 100
m = 7
print(f"{a}^{b} mod {m} = {fast_pow_mod(a, b, m)}")  # 输出: 3^100 mod 7 = 4
C++实现
#include <iostream>
using namespace std;

long long fast_pow_mod(long long a, long long b, long long m) {
    long long result = 1;
    a = a % m;  // 底数取模
    while (b > 0) {
        if (b % 2 == 1) {
            result = (result * a) % m;  // 奇数指数时乘入结果
        }
        a = (a * a) % m;  // 底数平方取模
        b = b / 2;  // 指数减半
    }
    return result;
}

int main() {
    long long a = 3, b = 100, m = 7;
    cout << a << "^" << b << " mod " << m << " = " << fast_pow_mod(a, b, m) << endl;  // 输出: 3^100 mod 7 = 4
    return 0;
}
Java实现
public class FastPowMod {
    public static long fastPowMod(long a, long b, long m) {
        long result = 1;
        a = a % m;  // 底数取模
        while (b > 0) {
            if (b % 2 == 1) {
                result = (result * a) % m;  // 奇数指数时乘入结果
            }
            a = (a * a) % m;  // 底数平方取模
            b = b / 2;  // 指数减半
        }
        return result;
    }

    public static void main(String[] args) {
        long a = 3, b = 100, m = 7;
        System.out.println(a + "^" + b + " mod " + m + " = " + fastPowMod(a, b, m));  // 输出: 3^100 mod 7 = 4
    }
}

代码解析

  1. 初始取模:对底数 a a a 先取模 m m m,确保初始值在合理范围内(利用同余原理 a ≡ a m o d    m ( m o d m ) a \equiv a \mod m \pmod{m} aamodm(modm))。
  2. 快速幂逻辑
    • 当指数 b b b 为奇数时,将当前底数 a a a 乘入结果,并对结果取模。
    • 每次将底数 a a a 平方并取模(利用同余的幂性: a 2 ≡ ( a m o d    m ) 2 ( m o d m ) a^2 \equiv (a \mod m)^2 \pmod{m} a2(amodm)2(modm))。
    • 指数 b b b 不断减半,直到变为 0,时间复杂度为 O ( log ⁡ b ) O(\log b) O(logb)
  3. 避免溢出:每次乘法后立即取模,防止中间结果超过数据类型范围。

同余原理案例中的应用

  • 幂性应用:通过 a ≡ a m o d    m ( m o d m ) a \equiv a \mod m \pmod{m} aamodm(modm),将大数 a a a 转换为等效的小数,简化计算。
  • 模运算封闭性:加法、乘法在模运算下保持同余关系,即 ( a × b ) m o d    m = [ ( a m o d    m ) × ( b m o d    m ) ] m o d    m (a \times b) \mod m = [(a \mod m) \times (b \mod m)] \mod m (a×b)modm=[(amodm)×(bmodm)]modm,确保每一步计算结果等价于原始大数运算的结果。

应用扩展:RSA加密中的模幂运算

在RSA加密算法中,加密和解密过程本质上是大数的模幂运算(如 C = M e m o d    n C = M^e \mod n C=Memodn M = C d m o d    n M = C^d \mod n M=Cdmodn)。上述快速幂取模算法是RSA的核心实现基础,利用同余原理确保加密和解密的正确性,同时通过高效计算应对大数场景。通过同余原理和快速算法,即使 e e e d d d 是数百位的大整数,也能在合理时间内完成计算。

That’s all, thanks for reading!
觉得有用就点个赞、收进收藏夹吧!关注我,获取更多干货~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值