Task2 bayes_plus||datawhale

生成模型
在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。它给观测值和标注数据序列指定一个联合概率分布。在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。常见的基于生成模型算法有高斯混合模型和其他混合模型、隐马尔可夫模型、随机上下文无关文法、朴素贝叶斯分类器、AODE分类器、潜在狄利克雷分配模型、受限玻尔兹曼机

比如:要确定一个瓜是好瓜还是坏瓜,用判别模型的方法是从历史数据中学习到模型,然后通过提取这个瓜的特征来预测出这只瓜是好瓜的概率,是坏瓜的概率。

这类模型的特点是,在好瓜,坏瓜模型中都试试,哪个大,谁就是最后结果

而生成模型之所以称为生成模型,是因为其预测的根据是联合概率p(x,y),而联合概率可以理解为生成(x,y)样本的概率分布(或称为依据)。

具体来说,机器学习已知x,从y的候选集合中选出一个来。可能是(x,y1),(x,y2),(x,y3)…(x,yn)。实际数据是如何生成的依赖于p(x,y)。最后的预测结果选生成概率最大的那个

在这里插入图片描述

判别模型
在机器学习领域判别模型是一种对未知数据 y 与已知数据 x 之间关系进行建模的方法。判别模型是一种基于概率理论的方法。已知输入变量 x ,判别模型通过构建条件概率分布 P(y|x) 预测 y 。常见的基于判别模型算法有逻辑回归、线性回归、支持向量机、提升方法、条件随机场、人工神经网络、随机森林、感知器

比如:利用生成模型是根据好瓜的特征首先学习出一个好瓜的模型,然后根据坏瓜的特征学习得到一个坏瓜的模型,然后从需要预测的瓜中提取特征,放到生成好的好瓜的模型中看概率是多少,在放到生产的坏瓜模型中看概率是多少,哪个概率大就预测其为哪个

这类模型的特点都是输入属性X可以直接得到Y

总结
生成模型是所有变量的全概率模型,而判别模型是在给定观测变量值前提下目标变量条件概率模型。因此生成模型能够用于模拟(即生成)模型中任意变量的分布情况,而判别模型只能根据观测变量得到目标变量的采样。判别模型不对观测变量的分布建模,因此它不能够表达观测变量与目标变量之间更复杂的关系。因此,生成模型更适用于无监督的任务,如分类和聚类

先验概率
在贝叶斯统计中,某一不确定量 p 的先验概率分布是在考虑"观测数据"前,能表达 p 不确定性的概率分布。它旨在描述这个不确定量的不确定程度,而不是这个不确定量的随机性。这个不确定量可以是一个参数,或者是一个隐含变量。

先验概率,就是常识、经验、统计学所透露出的“因”的概率

后验概率
在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率。同样,后验概率分布是一个未知量(视为随机变量)基于试验和调查后得到的概率分布。“后验”在本文中代表考虑了被测试事件的相关证据。

后验概率,就是在知道“果”之后,去推测“因”的概率

贝叶斯公式在这里插入图片描述
极大似然估计
估计类条件概率有一种常用的策略就是先假定其具有某种确定的概率分布形式,再基于训练样本对概率分布的参数进行估计。
在这里插入图片描述

贝叶斯分类器的训练过程就是参数估计。总结最大似然法估计参数的过程,一般分为以下四个步骤
1.写出似然函数;
2.对似然函数取对数,并整理;
3.求导数,令偏导数为0,得到似然方程组;
4.解似然方程组,得到所有参数即为所求。

注意
朴素贝叶斯分类器采用了“属性条件独立性假设”“属性条件独立性假设”:对已知类别,假设所有属性相互独立。换言之,假设每个属性独立的对分类结果发生影响相互独立。

极值问题
很多时候遇到求出各种目标函数(object function)的最值问题(最大值或者最小值)。关于函数最值问题,其实在高中的时候我们就已经了解不少,最经典的方法就是:直接求出极值点。这些极值点的梯度为0。若极值点唯一,则这个点就是代入函数得出的就是最值;若极值点不唯一,那么这些点中,必定存在最小值或者最大值(去除函数的左右的最端点),所以把极值代入函数,经对比后可得到结果。

请注意:并不一定所有函数的极值都可以通过设置导数为0的方式求 出。也就是说,有些问题中当我们设定导数为0时,未必能直接计算出满足导数为0的点(比如逻辑回归模型),这时候就需要利用数值计算相关的技术(最典型为梯度下降法,牛顿法……)

下溢问题

由上述公式可以看到,求概率时多个概率值相乘,得到的结果往往非常小;因此通常采用取对数的方式,将连乘转化为连加,以避免数值下溢

拉普拉斯平滑
利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算p(w0|1)p(w1|1)p(w2|1)。如果其中有一个概率值为0,那么最后的成绩也为0

为了降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2。这种做法就叫做拉普拉斯平滑(Laplace Smoothing)又被称为加1平滑,是比较常用的平滑方法,它就是为了解决0概率问题。

在这里插入图片描述

在这里插入图片描述
优缺点
优点:
1.朴素贝叶斯模型有稳定的分类效率。
2.对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是3.数据量超出内存时,可以一批批的去增量训练。
对缺失数据不太敏感,算法也比较简单,常用于文本分类。

缺点:
1.理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
2.需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
3.由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
4对输入数据的表达形式很敏感。

sklearn库

from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
import pandas as pd
from sklearn.model_selection import train_test_split
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
clf = GaussianNB().fit(X_train, y_train)
print ("Classifier Score:", clf.score(X_test, y_test))
import math
class NaiveBayes:
    def __init__(self):
        self.model = None
    # 数学期望
    @staticmethod
    def mean(X):
        """计算均值
        Param: X : list or np.ndarray      
        Return:
            avg : float      
        """
        avg = 0.0
        # ========= show me your code ==================
        avg = sum(X) / float(len(X))
        # ========= show me your code ==================
        return avg
    # 标准差(方差)
    def stdev(self, X):
        """计算标准差
        Param: X : list or np.ndarray
        Return:
            res : float
        """
        res = 0.0
        # ========= show me your code ==================
        avg = self.mean(X)
        res = math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
        # ========= show me your code ==================
        return res
    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        """根据均值和标注差计算x符号该高斯分布的概率
        Parameters:
        ----------
        x : 输入
        mean : 均值
        stdev : 标准差
        Return:
        res : float, x符合的概率值
        """
        res = 0.0
        # ========= show me your code ==================
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        res = (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
        # ========= show me your code ==================
        return res
    # 处理X_train
    def summarize(self, train_data):
        """计算每个类目下对应数据的均值和标准差
        Param: train_data : list
        Return : [mean, stdev]
        """
        summaries = [0.0, 0.0]
        # ========= show me your code ==================
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        # ========= show me your code ==================
        return summaries
    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value) for label, value in data.items()
        }
        return 'gaussianNB train done!'
    # 计算概率
    def calculate_probabilities(self, input_data):
        """计算数据在各个高斯分布下的概率
        Paramter:
        input_data : 输入数据
        Return:
        probabilities : {label : p}
        """
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        # ========= show me your code ==================
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        # ========= show me your code ==================
        return probabilities
    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
        return label
    # 计算得分
    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))
 model = NaiveBayes()
 model.fit(X_train, y_train)
 model.score(X_test, y_test)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值