基于Pytorch深度学习框架的全套Python环境配置 windows10+pycharm+cuda10.0+cuDNN7.3+anaconda+python3.6
现在研究生搞科研,都在学深度学习AI,我也是其中的一员。感觉这东西很飘渺,学到的东西不多,就觉得前期就安装python开发环境遇到不少坑,学到了配置环境。记录下来,算是一种收获。我也都是参照CSDN上给位博主的文章。到哪一步附上相应的博客。
-
首先介绍我用到了那些软件或库。
python3.6 + anaconda + cuda 10.0 + cuDNN 7.3 + Pycharm
-
、安装
安装是有先后顺序的,有些顺序是可以稍微调整。
-
安装pycharm
参考地址:
https://www.runoob.com/w3cnote/pycharm-windows-install.html
建议安装到第四步,不安装python解释器。因为我们要使用conda进行不同版本的python环境管理更为方便,可靠,每个环境需要的解释器版本可能不同,第三方库版本可能不同,使用conda为不同项目创建不同环境更为有效。当然可以安装解释器,没什么影响。对于轻微强迫的我来说,不希望电脑上存在无用的安装。
-
安装anaconda 我安装anaconda 是适用于python3.6.5的,因为安装anaconda时会同时为你安装某个版本的解释器,这个可以选择,对于后面使用conda 创建自己的python环境没有关系。简单来说conda是一个python环境管理器,为我们管理所需要的各种第三方库。
参考地址:
https://blog.csdn.net/ITLearnHall/article/details/81708148
里面有conda使用命令,基础的必须掌握。另外也有为pycharm和解释器的连接。做到这步我们就可以写自己的程序了。
-
安装cuda 10.0 + cuDNN 7.3
因为深度学习对于训练时间有很大需求,现在大都有GPU,使用GPU加速训练相当重要,所以我们使用CUDA,用于使用GPU训练模型,并使用cuDNN加速。
我这里使用了cuda 10.0,其兼容性好,我也尝试过使用最新的cuda ,装了一次没有成功果断放弃。
参考地址:
https://blog.csdn.net/Bushka_/article/details/105396989
对于新手来说,不建议自定义安装,总之有几个必不可少的步骤,安装vs;将cuDNN 解压后的文件复制到相应的文件,是文件里的,不是真个文件的复制。添加环境变量。
-
安装pytorch
安装pytorch可以安装基于cuda的,也可以不使用,如果我们要使用GPU就必须安装cuda的。要不然不能使用。
参考地址:
-
-
大功告成!
这类的博客太多了,但不够全,因为我目前使用了这些东西,就先将我会的记录下来。其中参考了很多博客,有对有错,有繁有简,算一个综合,将不少内容汇聚到一起。因为太懒不想复现一遍操作,另外重做也没有太多作用。