案例题目
- 编程实现参数n的阶乘并返回,所谓阶乘就是从1累乘到n的结果
/*
编程实现累乘积的计算并打印
*/
public class JieChengTest {
// 自定义成员方法实现将参数n的阶乘计算出来并返回
// 1! = 1; 2! = 1*2; 3! = 1*2*3; ... n! = 1*2*3*...*n;
int show(int n) { // int n=5; int n = 4; int n = 3; int n = 2; int n = 1;
// 递推的方式
/*
int num = 1;
for(int i = 1; i <= n; i++) {
num *= i;
}
return num;
*/
/*
5! = 5 * 4 * 3 * 2 * 1;
4! = 4 * 3 * 2 * 1;
3! = 3 * 2 * 1;
2! = 2 * 1;
1! = 1;
5! = 5 * 4!;
4! = 4 * 3!;
3! = 3 * 2!;
2! = 2 * 1!;
1! = 1;
n! = n * (n-1)!;
*/
// 递归的方式
// 当n的数值为1时,则阶乘的结果就是1
/*
if(1 == n) {
return 1;
}
*/
if(1 == n) return 1;
// 否则阶乘的结果就是 n*(n-1)!
return n*show(n-1);
// show(5) => return 5*show(4); => 120
// show(4) => return 4*show(3); => 24
// show(3) => return 3*show(2); => 6
// show(2) => return 2*show(1); => 2
// show(1) => return 1; => 1
}
public static void main(String[] args) {
// 1.声明JieChengTest类型的引用指向该类型的对象
JieChengTest jct = new JieChengTest();
// 2.调用方法进行计算并打印
int res = jct.show(5);
System.out.println("最终的计算结果是:" + res); // 120
}
}
最终的计算结果是:120
递归的基本概念
递归本质就是指在方法体的内部直接或间接调用当前方法自身的形式。
注意事项
- 使用递归必须有递归的规律以及退出条件。
- 使用递归必须使得问题简单化而不是复杂化。
- 若递归影响到程序的执行性能,则使用递推取代之。
递归计算阶乘的原理分析
**测试:**若递归影响到程序的执行性能,则使用递推取代之。
编程实现费式数列中第n项的数值并返回。费式数列: 1 1 2 3 5 8 13 21 ……
/*
编程实现费氏数列的计算并打印 功能类/封装类
*/
public class Fee {
// 自定义成员方法实现费氏数列中第n项数值的计算并返回,n由参数指定
// 1 1 2 3 5 8 13 21 ....
int show(int n) { // int n = 5; int n = 4; int n = 3; int n = 2; int n = 1;
// 1.使用递归的方式进行计算
/*
// 当n=1或者n=2时,结果是1
if(1 == n || 2 == n) {
return 1;
}
// 否则结果是前两项的和
return show(n-1) + show(n-2);
// show(5) => return show(4) + show(3); => 5
// show(4) => return show(3) + show(2); => 3
// show(3) => return show(2) + show(1); => 2
// show(2) => return 1; => 1
// show(1) => return 1; => 1
*/
// 2.使用递推的方式进行计算
int ia = 1;
int ib = 1;
for(int i = 3; i <= n; i++) {
int ic = ia + ib;
ia = ib;
ib = ic;
}
return ib;
}
}
/*
编程实现对费氏数列类的测试 测试类
*/
public class FeeTest {
public static void main(String[] args) {
// 1.声明FeeTest类型的引用指向该类型的对象
Fee ft = new Fee();
// 2.调用方法计算并打印
int res = ft.show(55);
System.out.println("计算的结果是:" + res); // 5
}
}
计算的结果是:2144908973
费氏数列的递归分析
费氏数列中递推实现的原理分析