像 Hugging Face 这样的AI模型平台,很容易受到攻击者多年来通过 npm、PyPI 和其他开源存储库成功执行的同类攻击的影响
Hugging Face 等AI模型存储库为攻击者提供了与 npm 和 PyPI 等开源公共存储库相同的将恶意代码植入开发环境的机会。
在今年 4 月即将举行的 Black Hat Asia 演讲中,题为“混淆学习:通过AI模型进行供应链攻击”,来自 Dropbox 的两名研究人员将演示攻击者可通过 Hugging Face 上的 ML 模型分发恶意软件的多种技术。这些技术类似于攻击者多年来成功使用的将恶意软件上传到开源代码存储库的技术,并强调组织需要在使用AI模型前实施控制以彻底检查AI模型。
Dropbox 安全工程师阿德里安·伍德 (Adrian Wood) 表示:“AI管道是一种全新的供应链攻击媒介,公司需要了解他们正在执行哪些行为以及使用沙箱来保护自己。” “AI模型不是纯函数。它们是可被利用的成熟的恶意软件载体。”
Hugging Face 等存储库是一个有吸引力的目标,因为AI模型使攻击者能够访问敏感信息和环境。Dropbox 的安全工程师、Black Hat Asia 论文的合著者 Mary Walker 表示,它们也相对较新。沃克说,从某种程度上来说,Hugging Face是一种全新的平台。“如果你看看他们的热门模型,你通常会发现某个模型突然变得流行,而且是一些不知名的用户放在那里的。人们使用的并不总是值得信赖的模型,”她说。
<