Householder变换

文章探讨了Pv正交矩阵和垂直正交矩阵在Householder变换中的应用。作者对一个公式提出疑问,指出可能的错误,并解释了Householder矩阵作为复共轭对称和酉矩阵的特性。Householder变换能保持向量范数不变,常用于将向量转化为仅首元素非零的稀疏形式,是QR分解的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对Pv正交矩阵和Pv垂直正交矩阵的证明
对Pv正交矩阵和Pv垂直正交矩阵的证明
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
感觉上面那个长式子错了,我带入了几次都是x在()的左边才和Hx相等。或者没错,哪位读者可以给我留言讲一下。
在这里插入图片描述
好了,这就是今天学的Householder变换,
Hx是Pv(垂直)x - Pv 构造出来的。
Hx是x关于Pv(垂直)x的的一个反射。
Householder矩阵是复共轭对称矩阵,是酉矩阵。
Householder变换具有保范性。
Householder向量的构造,构造后经过Household变换把原始向量变稀疏,只有向量第一个元素非零。其范数不变。可用于QR分解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值