文章
Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems
作者:Norbert Marwan, and Jürgen Kurths
关于复杂网络处理时空数据(极端事件和突变)
1、复杂网络
网络有nodes和links,通过邻接矩阵A表示。有向网络A不对称,无向网络A对称。
1.1节点ki的度
1.2入度出度
1.3the transitivity coefficient聚集系数T
在网络中,节点的聚集系数是指与该节点相邻的所有节点之间连边的数目占这些相邻节点之间最大可能连边数目的比例。而网络的聚集系数则是指网络中所有节点聚集系数的平均值,它表明网络中节点的聚集情况即网络的聚集性,也就是说同一个节点的两个相邻节点仍然是相邻节点的概率有多大,它反映了网络的局部特性。
2、递归网络
参考文献:[1]白宝丹, 汪源源, 杨翠微. 基于递归复杂网络的房颤术后监测[J]. 仪器仪表学报, 2012, 33(004):809-815.
相空间链接:https://www.zhihu.com/question/264986355?sort=created
时间序列与复杂网络转换:https://blog.csdn.net/weixin_46124302/article/details/109108248
原文:https://www.pnas.org/content/105/13/4972.full
国内:https://www.zsdocx.com/p-1838044.html
先导知识【时间序列–相空间轨迹–六维xyz,px,py,pz–距离–递归图–递归矩阵–递归网络】
用递归矩阵表示
邻接矩阵(R-单位矩阵)
应用:嵌入问题和动态不变量,时滞系统和非混沌奇异吸引子,异质递归分析,或孪生替代
可用邻接矩阵得到递归矩阵,它的主要优点是可以通过已知的网络测量来分析得到的递归网络,即,进一步的诊断工具变得可用于时间序列分析。
聚集系数T它量化了相空间轨迹的几何形状,并可用于区分不同的动力学(例如,规则的和不规则的)。
2.1聚集维度 transitivity dimension
2.2RQA:
递归矩阵的量化也可以通过递归量化分析(RQA)来执行。其他measures表示几何空间的性质,RQA相空间轨迹的动力学性质。
经典例子奥勒斯系统the Rossler system
不同的a,b,c代表不同的系统。文章中是a=b,不断测试得到当a在0.24-0.25之间时,系统存在周期性行为, Lyapunov指数(李雅普诺夫指数)为负。
x分量的相空间重构,(a)a=0.245 周期(b)a=0.29 混沌
2.3确定度determinism
另一个确定是否为周期性动态系统的方法是使用确定度determinism,就是在递归图中形成对角线的递归点的比率。
P(l)是对角线长度的概率密度。递归图中对角线长度对应于一段时间内系统变化与另一段时间相似。DET越大,确定性越强,可预测性越强。在白噪声序列中,递归图中只有许多单点。
递归图对角线(c)a=0.245 周期(d)a=0.29 混沌
但DET在Rossler系统中没能区分出周期性与否。
DET始终接近1,而T在周期窗口中数值变大接近3/4.所以,仍需要更多度量方法去揭示动力系统的特性。
3、古气候突变的识别
递归网络方法在许多学科的不同应用中具有巨大的潜力。作为一个分类器,它可以帮助,例如,检测严重的疾病,如先兆子痫,检测癫痫状态,或研究多相流体流动。另一个重要的应用是检测动力学的关键转变。这种转变检测对于研究过去气候的变化至关重要,以便更好地理解气候系统。
此处研究海表温度与特定气候响应之间的关系,如亚洲季风系统或大西洋温盐环流,以及它们的状态变化。 sea surface temperature (SST)
在古气候研究中,一般使用湖泊和海洋沉积物或洞穴等数据记载完成。由浮游植物产生海洋沉积物有机部分中的烯酮残留物,可用来重构SST用来研究海洋温度的变化。
ODP 1143(气象站)采样不均匀,使用线性方法或者经典RQA,首先得将时间序列插值到等距时间轴上,但递归网络不需要,因为它表征的是几何结构。
ka千年 Ma百万年
3.1实验过程
以410ka作为滑动窗口,20ka作为步长,使用递归网络通过沉积物预测ssh图5(a),和计算聚散系数T。通过 the false nearest neighbors method 确定嵌入维度m=6,(变换后空间的维度),时间延迟的选择由自相关函数指导,并且被认为对于所有时间窗口都是恒定的,大约为20 ka(一个窗口内的中值采样时间),The threshold is chosen in such a way to preserve a constant recurrence rate of 7.5%.?
我们使用1000个窗口时间序列的重采样来执行自举方法,计算T经验分布。在这个真实的例子中,我们使用90%的置信水平。由于我们不知道存在哪种动态转变,我们将同时考虑上置信水平和下置信水平。
3.2结论:对于每个数值明显转变的时间(图中黄色虚线位置),都对应气候的转变,East Asian Monsoon system (EAM)
2.8–2.7Ma:北半球冰川作用开始,这种过渡通过2.8和2.2 Ma之间T的显著增加得到了很好的揭示。
1.25 Ma:根据对黄土沉积物的彻底调查,EAM冬季风的强度开始与全球冰量变化强耦合。在此期间,T增加(尽管没有达到显著性)。这一次也标志着向100 ka周期(米兰科维奇周期古怪时期)的冰川间冰期过渡阶段的开始。
0.6 ka:这种100 ka时期的优势在此之后得到很好的确立,并通过0.6-0.2 ka之间的T增加清晰可见。
2.0-1.5 ka和0.7ka左右:夏季风减弱。T显示的数值比之前讨论的时期要低。
T的变化证实了以前的发现,即EAM和米兰科维奇周期之间有很强的联系。
4、基于复杂系统的连续系统的时空数据分析
tips:经验正交函数EOF = PCA
复杂网络是EOF的替代方案,而且更好的揭示不同和互补的方面
tips:连续系统是系统状态随时间作平滑连续变化的动态系统。包括由于数据采集是在离散时间点上进行而导致的非连续变化。连续系统可用一组微分方程来描述。当微分方程的系数为常数时称为定常系统,当系数随时间而变化时则称为时变系统。这类系统的数学模型包括连续模型(微分方程等)、离散时间模型(差分方程等)及连续-离散混合模型。
气候网络方法用于时空数据分析,其思想是通过测量相互关系Ci,从空间嵌入的时间序列(在气候的情况下,例如从地面空气温度场)重建复杂的网络;这些时间序列之间。节点的位置可以是任意的(例如,当使用仪器数据时的气象站)或网格点(例如,当使用模型或再分析数据时)。在未加权网络中,链路表示属于节点的时间序列之间的高度相关性,即阈值T作用于相互关系矩阵C上(例如皮尔逊相关性)
可用于undirected or unweighted also directed or weighted networks
应用:在气候背景下,这种网络方法已被应用于研究,例如,气候群落厄尔尼诺/南方涛动的影响,主要的热输送路径和时空尺度,外部和内部大气作用力,创建临界状态变化的预警指标,甚至用于模型相互比较。
当使用皮尔逊相关描述相互关系时,Ci;在节点之间,那么节点度显然与第一个EOF有关。其他网络度量,如介数中心性(betweenness centrality),提供了EOF分析无法捕获的进一步信息。
一般来说,空间定位的时间序列之间的相互关系不能被认为仅仅是线性的。为了研究非线性的相互关系,基于信息的测量(例如,相互信息)被建议用于网络重建。特别是,当研究气候或气象现象时,我们经常面对类似事件的数据,例如每日(或每小时)降雨序列或极端事件时间序列。对于这种数据,可以使用斯皮尔曼等级相关Spearman rank correlation。然而,对于这种数据,一种更强大的方法是事件同步方法。
事件同步是模拟大脑神经元开发。统计两个相似 序列的数量(允许一定偏差)
如果两个序列中相似事件m,n发生时间差小于动态延迟τ(m,n),则认为事件同步。动态延迟是两个序列中后续事件发生的最小等待时间的一半,小于给定的最大delay。
undirected (or directed) synchronization of m,n
事件同步the event synchronization E between the two event series as the sum of S(m, n)两个序列中所有同步事件之和
优点:
delay是灵活的,标准方法lag滞后是固定的
使用事件同步方法后,比较在位置i,j的空间嵌入的时间序列,也可以使用以下方式表示
阈值的选择可以通过E的经验分布选择2%~5%的置信水平,确保links代表节点间的强相关关系
应用:气候应用明显占主导地位,但这种方法也有望用于其他领域,如等离子体、湍流、心脏病学或大脑研究。
5、极端事件的预测
数据:South American extreme rainfall data,satellite-based Tropical Rainfall
Measurement Mission (TRMM 3B42 V7,)with 3-hourly temporal and 0.25*0.25 spatial resolution.数据规格,时间限制在澳大利亚夏季,超99%被定义为极端降雨事件
5.1研究source & sinks
建立有向加权网络
network divergence网络差异如下
△S<0,则为极端事件的the source regions
△S>0,则为极端事件的sinks汇区
结果发现the SESA region(阿根廷中部平原) 有negative △S,表示source
5.2研究SESA的降雨事件传播到哪写范围
考虑SESA影响的所有节点的入度,地区R在node i的影响impact 如下:
│R│表示R区域影响的节点数,I( R )表示i位置极端事件受R区域影响的amount
除了SESA附近,the Central Andes东坡也有很高的值,说明SESA强降雨之后,the Central Andes东坡也会有强降雨。
原因:地形屏障、来自南方的锋面系统和来自亚马逊盆地的向南湿气流之间的相互作用,导致建立了一个风通道,将温暖和潮湿的空气从亚马逊西部地区吸引到SESA地区。在这里,它与来自南方的锋面系统的冷空气碰撞,并产生了持续的降雨。这种降雨与锋面系统的北部迁移一起传播,在西部受安第斯地形的限制。
先决条件是SESA的低压异常,若满足,则两天内安第斯山脉中部的东坡将出现极端降雨。
结果:60%的positive prediction rates,在El Nino条件下,甚至达到90%。(厄尔尼诺现象又称厄尔尼诺暖流,是太平洋赤道带大范围内海洋和大气相互作用后失去平衡而产生的一种气候现象。)
6、结论
6.1技术:
(1)递归网络:很短的时间序列中识别出突然的转变。
(2)事件同步:识别在不同空间区域中几乎同时发生的事件,然后使用复杂的网络来研究极端事件的传播和相互作用。(安第斯山脉极端洪水形成的机制)
6.2潜力:湍流、神经科学,医学,社会经济。
6.3outlooks:
(1)这些概念扩展到多变量(时空)数据,例如不同的气候或生理参数。
(2)从网络角度研究可能性质非常不同的相互作用系统,例如气候和可再生能源发电或气候和健康。
(3)这些技术的综合数学基础,包括适当的测试统计。