第一阶段:Python基础
第二阶段:常用模块
- Numpy
- Pandas
- Matplotlib
- Seaborn
推荐教程:
- Numpy & Pandas (莫烦 Python 数据处理教程)
- Matplotlib Python 画图教程 (莫烦Python)
- 【python教程】数据分析——numpy、pandas、matplotlib
- 书籍方面可以看看《利用python进行数据分析》
第三阶段:机器学习基础
建议看吴恩达老师的课程,可以多看几遍,干货十足。
B站和网易云课堂 上都有资源:
吴恩达课程(接近200万播放量)
GitHub项目地址为:https://github.com/1120723754/Coursera-ML-AndrewNg-Notes
机器学习实战环节:https://cuijiahua.com/blog/ml/
参考书籍可以看看:《统计学习方法》李航
(下一篇我将机器学习笔记展示出来)
第四阶段:深度学习
1.吴恩达深度学习
网易云课堂(中文字幕)传送门:深度学习工程师微专业 - 一线人工智能大师吴恩达亲研-网易云课堂 - 网易云课堂
简介:这应该是最好的入门教程了(如果你做作业学的话,不做作业效果大打折扣)
神经网络和深度学习
- 改善深层神经网络:超参数调试、正则化以及优化
- 结构化机器学习项目
- 卷积神经网络
- 序列模型
吴恩达深度学习笔记:深度学习笔记-目录
参考答案和资料:吴恩达老师的深度学习课程笔记及资源
作业的中文翻译版本:【中文】【deplearning.ai】
2.斯坦福CS231N(Spring 2019)
CS231n: Convolutional Neural Networks for Visual Recognition
简介:由李飞飞教授和她的学生们为我们带来的计算机视觉(CV)课程。
【中文字幕】2017春季CS231n 斯坦福深度视觉识别课
Pytorch 学习
推荐书籍:陈云《深度学习框架PyTorch:入门与实践》
先更到此处,之后等本人边学边实践再给大家推荐一些好点子。。。