import torch
import torch.nn as nn
# 已知公式形式: f = w * x,未知参数w的数值# 目标 w = 2# 初始化数据# 数据集 X
X = torch.tensor([1,2,3,4],dtype = torch.float32)# 验证集 Y
Y = torch.tensor([2,4,6,8],dtype = torch.float32)# 初始 w
w = torch.tensor(0.0,dtype = torch.float32, requires_grad =True)# 前向传播defforward(x):return w * X
# 计算损失# 损失函数使用方差(MSE)
loss = nn.MSELoss()# 优化器,用于更新w
optimizer = torch.optim.SGD([w], lr=learning_rate)print(f'Prediction before training: f(5) = {forward(5).item():.3f}')# 2) Define loss and optimizer
learning_rate =0.01
n_iters =100# callable function
loss = nn.MSELoss()
optimizer = torch.optim.SGD([w], lr=learning_rate)# 训练
learning_rate =1e-2
n_iters =100for epoch inrange(n_iters):# 计算出prediction
y_pred = forward(X)# 计算损失
l = loss(Y,y_pred)# 计算梯度
l.backward()# 更新 w
optimizer.step()# 梯度归零
optimizer.zero_grad()if epoch %10==0:print(f"epoch{epoch+1}: w = {w:.3f}, loss = {l:.8f}")print(f'Prediction after training: f(5) = {forward(5).item():.3f}')
Prediction before training: f(5) = tensor([0., 0., 0., 0.], grad_fn=<MulBackward0>)
epoch1: w = 0.300, loss = 30.00000000
epoch11: w = 1.665, loss = 1.16278565
epoch21: w = 1.934, loss = 0.04506890
epoch31: w = 1.987, loss = 0.00174685
epoch41: w = 1.997, loss = 0.00006770
epoch51: w = 1.999, loss = 0.00000262
epoch61: w = 2.000, loss = 0.00000010
epoch71: w = 2.000, loss = 0.00000000
epoch81: w = 2.000, loss = 0.00000000
epoch91: w = 2.000, loss = 0.00000000
Prediction after training: f(5) = tensor([2.0000, 4.0000, 6.0000, 8.0000], grad_fn=<MulBackward0>)