分享
@@南风
这个作者很懒,什么都没留下…
展开
-
安装centos图像界面工具,server with GUI好还是GNOME Desktop好
如果你需要一个轻量级的图形界面,适用于服务器环境,并且只需要基本的图形工具和管理工具,那么“Server with GUI”可能是一个更好的选择。它提供了一个最小化的桌面环境,足以进行一些基本的管理任务,但不会添加太多不必要的组件。如果你需要更完整的桌面环境,包括更多的图形应用程序和功能,那么“GNOME Desktop”可能更适合你。简而言之,如果你想要一个轻量级的、专注于服务器管理的界面,选择“Server with GUI”;如果你需要一个更完整的桌面环境,选择“GNOME Desktop”。原创 2024-05-09 10:30:02 · 1477 阅读 · 0 评论 -
urllib模块代理
作用:通过不断换IP的方式,防止IP被禁无法继续爬取。包括正向和反向代理。原创 2024-05-09 00:02:56 · 145 阅读 · 0 评论 -
POST请求
【代码】POST请求。原创 2024-05-08 23:31:47 · 296 阅读 · 0 评论 -
UA身份伪装
【代码】UA身份伪装。原创 2024-05-08 23:29:28 · 548 阅读 · 0 评论 -
爬虫-爬取感兴趣图片(python code 直接运行)
1、codeimport requestsimport reimport osheaders = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36'}name = input('请输入要爬取的图片类别:')num = 0num_1 = 0num_2 = 0x =原创 2021-08-04 21:58:00 · 262 阅读 · 0 评论 -
jupyetr notebook添加anaconda虚拟环境内核(tensorflow+pytorch)
我的有两个tf2.4和torch1.8,两个的操作都是类似的。1、查环境conda env list2、激活虚拟环境activate tf2.43、安装ipykernelpip install ipykernel4、conda虚拟环境写入kernel中python -m ipykernel install --user --name 虚拟环境名字 --display-name "jupyter浏览器中显示的名字"我的虚拟环境是tf2.4,所以执行以下操作python -m ipyke原创 2021-08-03 19:16:20 · 257 阅读 · 1 评论 -
RGB to xml(labelimg应用)
1、open dir找到要标记的图片2、进行标记创建标记框实际标记save3、关于路径菜单栏中有change save dir,放到你要放的就好。原创 2021-07-28 21:36:35 · 131 阅读 · 0 评论 -
labelImg标注工具(win10安装)
1、下载下载地址:添加链接描述,选择windows下易于解压的zip文件。下载黄色圈里的内容。2、安装labelImg切换至解压缩后的LabelImg目录下载好后,将压缩文件放到自己磁盘空间大的盘,然后解压,一定要到这个界面,然后复制绝对路径。然后进入这个绝对路径。安装pyqt5conda install pyqt=5pyrcc5 -o resources.py resources.qrc继续打开labelImg工具python labelImg.py出现lxml模原创 2021-07-26 13:38:42 · 303 阅读 · 0 评论 -
pytorch输出分类结果并显示每个类别的概率
使用钩子函数hook()feat_act={}def get_activationb(name): def hook(model,input,output): feat_act[name]=output.detach() return hookmodel.avgpool.register_forward hook(get_activation('avgpool'))avgpool是我们想看哪一层就填写那一层。...原创 2021-05-25 14:11:13 · 5685 阅读 · 1 评论 -
GPU信息查询
Jupyter查看深度学习训练时使用的GPU信息1、是否有GPUtf.test.is_gpu_available()2、使用什么GPU(Tesla p4,p100,T4?)# 返回True或者Falsetf.test.is_gpu_available()12from tensorflow.python.client import device_lib# 列出所有的本地机器设备local_device_protos = device_lib.list_local_devices()原创 2021-01-23 20:28:49 · 1081 阅读 · 0 评论 -
seaborn-heatmap
1、导包%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npnp.random.seed(0)import seaborn as snssns.set()2、显示自己的数据uniform_data=[[1,2,3],[4,5,6],[7,8,9]]print(uniform_data)heatmap=sns.heatmap(uniform_data)3、设置调色板的取值ax=sns.heatmap原创 2021-04-04 09:38:32 · 175 阅读 · 0 评论 -
pytorch ResNet结构代码实现
1、ResNet基础思想结构每个 ResNet 块都包含一系列层,残差连接把块的输入加到块的输出上。由于加操作是在元素级别执行的,所以输入和输出的大小要一致。如果它们的大小不同,我们可以采用填充的方式。ResNet网络结构为多个Residual Block的串联。实验表明学习残差比直接学习输入、输出间映射要容易收敛,可达到更高的分类精度,ResNet 在上百层都有很好的表现。ResNet结构非常容易修改和扩展,通过调整block内的channel数量以及堆叠的block数量,就可以很容易地调整网络原创 2021-03-20 18:15:01 · 257 阅读 · 0 评论 -
图片缩放与目标值的规范
图片缩放与目标值的规范1、知识点图片缩放img=tf.image.resize(img,[224,224])图像标准化-----这里要将图片进行标准化,同时将图片转换成Numpy()的形式#图像标准化img=img/255plt.imshow(img.numpy())框框的确定是按照一定的比例来的,原来框框的最小和最大值会随着图片的缩放,按照相应的比例缩放xmin=(xmin/width)*224xmax=(xmax/width)*224ymin=(ymin/height)*224原创 2020-12-12 21:00:08 · 232 阅读 · 0 评论 -
模型保存的方法-----保存整个模型
模型保存的方法-----保存整个模型1、先训练一个模型2、保存整个模型的做法保存整个模型 整个模型可以保存到一个文件中,包括权重、模型配置乃至优化器配置。这样,可以为模型设置检查点,稍后还可以从完全相同的状态继续训练,无需访问原始代码。可以在TensorFlow.js中加载它们,然后在网络浏览器中训练和运行它们。keras使用HDF5标准提供基本的保存格式。【1】权重【2】模型配置【3】优化器配置3、重要知识点保存模型为h5格式model.save('less_model.h5'原创 2020-12-10 22:47:58 · 1716 阅读 · 0 评论 -
自动微分运算
自动微分运算1、重要的知识点创建一个变量#创建一个变量v=tf.Variable(0.0)#改变v的值#改变v的值v.assign(5)#改变v的值,v+1v.assign_add(1)#读取数据#读取数据v.read_value()求解梯度#求解导数,变化最快的方法,让损失变化,建立一个记录上下文梯度管理器#使用tape记录运算过程,求解梯度w=tf.Variable([[1.0]])with tf.GradientTape() as t:#梯度的磁带,上下文管理器原创 2020-12-03 14:59:28 · 140 阅读 · 0 评论 -
苹果叶片病害识别中的深度学习研究
苹果叶片病害识别中的深度学习研究1、研究内容基于DenseNet-121深度卷积网络,提出了回归、多标签分类和聚焦损失函数3种苹果叶片病害识别方法。2、数据集介绍用于识别的图像数据集来源于Aichalenger-Plant-Disease-Recognition。苹果叶片数据集由健康苹果、一般苹果黑星病、严重苹果黑星病、苹果灰斑病、一般雪松苹果锈病、严重雪松苹果锈病的症状图像组成。所有的数据图像尺寸归一化到1281283。通过随机选择的图像,以8:2的比率将构建的数据集分成训练数据集和测试数据集。在原创 2020-11-26 09:30:46 · 3292 阅读 · 1 评论 -
使用EfficientNet深度学习模型对植物叶病进行分类
使用EfficientNet深度学习模型对植物叶病进行分类1、研究内容研究中,提出了EfficientNet深度学习架构用于植物叶病分类,并将该模型的性能与其他最新的深度学习模型进行了比较。 EfficientNet体系结构和其他深度学习模型使用转移学习方法进行了培训。 在转移学习中,模型的所有层都设置为可训练的。 从测试数据集中获得的结果表明,与原始和增强数据集中的其他深度学习模型相比,EfficientNet架构的B5和B4模型获得了最高值。2、数据集PlantVillage数据集用于训练模型。原创 2020-11-24 10:42:42 · 930 阅读 · 0 评论 -
LeNet卷积神经网络
LeNet卷积神经网络1、介绍LeNet分为卷积层块和全连接层块连个部分。卷积层用来识别图像图像里的空间模式,如线条和物体局部,之后值的最大池化层则用来降低卷积层对位置的敏感性。卷积层块的输出形状为(批量大小,通道,高,宽)。当卷积层块的输出传入全连接层块时候,全连接层块会将小批量中每个样本变平(flatten)。2、通过Sequential类来实现LeNet模型#通过Sequential类来实现LeNet模型import d2lzh.d2lzh as d2limport mxnet as原创 2020-10-23 20:37:25 · 217 阅读 · 0 评论