需求
在很多的场景,比如某个核心服务,如热门视频或者实时排名等等,都存在大量读的场景。架构上通用的做法是读写服务分离,写服务部署少量,有存储写入瓶颈,读服务一般可以水平扩展
无热点key
写: mysql + redis
读:redis
有热点key
写: mysql + redis + etcd
读:redis + etcd + 本地缓存
那么本地缓存如何更新呢?简单的做法是设置本地超时时间,但是这样会带来数据的不一致,因为多个读进程的本地缓存副本数据不一致。轮询+超时的策略是很low的,可以利用etcd实现读进程watch语义,读进程watch 数据的变更。
写进程
更新缓存,更新mysql,更新etcd: key,/hot_data/id, value:version,注意不要用timestamp,避免时钟不一致,mysql db设计最好加一个版本号。etcd只保存id和version这样的元数据。
读进程
系统起来的时候从/hot_data/*读取所有的热点id,然后读取redis里面的数据,构建本地缓存。然后watch etcd /hot_data/,从上次读取到的版本号watch,可以保证不漏过任何更新事件,当watch到etcd变更的时候,重读redis更新本地缓存。
性能
有人可能会怀疑读进程太多了会拖垮etcd,理论上可能。只要热点id不是很多,更新不频繁,etcd支撑1w个watch是没有压力的,假设读进程有1w个,每个读进程可以handle 10w qps,那么总qps就是10亿。如果确实有性能问题,可以使用etcd镜像,由多个镜像来分担watch压力,还是可以水平扩展并且对读进程透明。
后续
很多文章和架构都介绍的由读进程去维护redis缓存,缓存位于读进程和redis之间的旁路或者主路,其实都是不合理的,一来是容易导致惊群问题,二是容易缓存穿透,这都给读进程提供了很多负担,另外要么会有进程之间的缓存不一致或者热点key问题。。。听说阿里开源了一个工具可以监听mysql的binlog来更新缓存,挺高大上,但是依然没有解决热点key的问题,如果不使用进程级别的缓存,只能把热点key增加多个名字以分散读压力,认为减轻热点问题。我觉得都挺low,还是把写数据和更新数据交给写进程,读进程负责读数据以及watch变更。