MEMS 课本习题(1)

Chapter 5 Lump Modeling

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
为了将机械系统转换为等效电路,我们需要将各个机械元件转换为相应的电气元件。以下是机械元件和其电气等效元件的对照关系:

  1. 质量(m) - 转换为 电感(L)
  2. 弹簧(k) - 转换为 电容(C)
  3. 阻尼器(b) - 转换为 电阻(R)

在机械系统中,力 F F F 对应电气系统中的电压 V V V,位移 x x x 对应电气系统中的电荷 q q q 或电流 i i i

根据图片中的机械系统,可以逐步绘制等效电路:

机械系统描述

  • 质量 m 1 m_1 m1 m 2 m_2 m2
  • 弹簧 k 1 k_1 k1 k 2 k_2 k2
  • 阻尼器 b b b

等效电路转换

  • 质量 m 1 m_1 m1 m 2 m_2 m2 转换为电感 L 1 L_1 L1 L 2 L_2 L2
  • 弹簧 k 1 k_1 k1 k 2 k_2 k2 转换为电容 C 1 C_1 C1 C 2 C_2 C2
  • 阻尼器 b b b 转换为电阻 R R R

具体转换步骤

  1. 弹簧 k 1 k_1 k1 转换为 电容 C 1 C_1 C1
    C 1 = 1 k 1 C_1 = \frac{1}{k_1} C1=k11
  2. 质量 m 1 m_1 m1 转换为 电感 L 1 L_1 L1
    L 1 = m 1 L_1 = m_1 L1=m1
  3. 阻尼器 b b b 转换为 电阻 R R R
    R = b R = b R=b
  4. 弹簧 k 2 k_2 k2 转换为 电容 C 2 C_2 C2
    C 2 = 1 k 2 C_2 = \frac{1}{k_2} C2=k21
  5. 质量 m 2 m_2 m2 转换为 电感 L 2 L_2 L2
    L 2 = m 2 L_2 = m_2 L2=m2

绘制等效电路

  1. 电压源 V V V 对应力 F F F
  2. 电容 C 1 C_1 C1 串联电阻 R R R,然后与电感 L 1 L_1 L1 串联
  3. 电感 L 1 L_1 L1 后接电容 C 2 C_2 C2 串联电感 L 2 L_2 L2

最终得到的等效电路如下图所示:

  V  -->  |----C1----R----L1----C2----L2----|

在这里插入图片描述

要找到电路的传递函数 I 1 ( s ) V ( s ) \frac{I_1(s)}{V(s)} V(s)I1(s),我们需要使用复阻抗分析。该电路包含一个电阻 R R R、两个电容 C 1 C_1 C1 C 2 C_2 C2,以及两个电感 L 1 L_1 L1 L 2 L_2 L2。我们首先计算每个元件的复阻抗。

复阻抗

  • 电阻 R R R:阻抗 Z R = R Z_R = R ZR=R
  • 电容 C C C:阻抗 Z C = 1 s C Z_C = \frac{1}{sC} ZC=sC1
  • 电感 L L L:阻抗 Z L = s L Z_L = sL ZL=sL

对于图中的电路:

  • 电容 C 1 C_1 C1 的阻抗: Z C 1 = 1 s C 1 Z_{C1} = \frac{1}{sC_1} ZC1=sC11
  • 电感 L 1 L_1 L1 的阻抗: Z L 1 = s L 1 Z_{L1} = sL_1 ZL1=sL1
  • 电容 C 2 C_2 C2 的阻抗: Z C 2 = 1 s C 2 Z_{C2} = \frac{1}{sC_2} ZC2=sC21
  • 电感 L 2 L_2 L2 的阻抗: Z L 2 = s L 2 Z_{L2} = sL_2 ZL2=sL2

等效阻抗计算

首先,找到电路的总阻抗。

并联阻抗

C 2 C_2 C2 L 2 L_2 L2 并联:
Z C 2 L 2 = ( 1 Z C 2 + 1 Z L 2 ) − 1 = ( 1 1 s C 2 + 1 s L 2 ) − 1 = ( s C 2 + 1 s L 2 ) − 1 = 1 s C 2 + 1 s L 2 = s L 2 s 2 L 2 C 2 + 1 Z_{C2L2} = \left( \frac{1}{Z_{C2}} + \frac{1}{Z_{L2}} \right)^{-1} = \left( \frac{1}{\frac{1}{sC_2}} + \frac{1}{sL_2} \right)^{-1} = \left( sC_2 + \frac{1}{sL_2} \right)^{-1} = \frac{1}{sC_2 + \frac{1}{sL_2}} = \frac{sL_2}{s^2L_2C_2 + 1} ZC2L2=(ZC21+ZL21)1=(sC211+sL21)1=(sC2+sL21)1=sC2+sL211=s2L2C2+1sL2

串联阻抗

Z C 2 L 2 Z_{C2L2} ZC2L2 L 1 L_1 L1 串联:
Z L 1 C 2 L 2 = Z L 1 + Z C 2 L 2 = s L 1 + s L 2 s 2 L 2 C 2 + 1 Z_{L1C2L2} = Z_{L1} + Z_{C2L2} = sL_1 + \frac{sL_2}{s^2L_2C_2 + 1} ZL1C2L2=ZL1+ZC2L2=sL1+s2L2C2+1sL2

Z L 1 C 2 L 2 Z_{L1C2L2} ZL1C2L2 C 1 C_1 C1 串联:
Z t o t a l = Z C 1 + Z L 1 C 2 L 2 = 1 s C 1 + s L 1 + s L 2 s 2 L 2 C 2 + 1 Z_{total} = Z_{C1} + Z_{L1C2L2} = \frac{1}{sC_1} + sL_1 + \frac{sL_2}{s^2L_2C_2 + 1} Ztotal=ZC1+ZL1C2L2=sC11+sL1+s2L2C2+1sL2

最后,添加电阻 R R R
Z t o t a l = R + Z C 1 + Z L 1 C 2 L 2 = R + 1 s C 1 + s L 1 + s L 2 s 2 L 2 C 2 + 1 Z_{total} = R + Z_{C1} + Z_{L1C2L2} = R + \frac{1}{sC_1} + sL_1 + \frac{sL_2}{s^2L_2C_2 + 1} Ztotal=R+ZC1+ZL1C2L2=R+sC11+sL1+s2L2C2+1sL2

转换为传递函数

为了找到传递函数 I 1 ( s ) V ( s ) \frac{I_1(s)}{V(s)} V(s)I1(s),我们需要找到 I 1 ( s ) I_1(s) I1(s) V ( s ) V(s) V(s) 的关系:

V ( s ) = I 1 ( s ) ⋅ Z t o t a l V(s) = I_1(s) \cdot Z_{total} V(s)=I1(s)Ztotal

因此:

I 1 ( s ) = V ( s ) Z t o t a l I_1(s) = \frac{V(s)}{Z_{total}} I1(s)=ZtotalV(s)

所以,传递函数为:

I 1 ( s ) V ( s ) = 1 R + 1 s C 1 + s L 1 + s L 2 s 2 L 2 C 2 + 1 \frac{I_1(s)}{V(s)} = \frac{1}{R + \frac{1}{sC_1} + sL_1 + \frac{sL_2}{s^2L_2C_2 + 1}} V(s)I1(s)=R+sC11+sL1+s2L2C2+1sL21

通过进一步简化这个表达式可以得到最终的传递函数。
在这里插入图片描述
为了给电路问题 5.3 建立一组状态方程,我们需要定义状态变量并使用电路中的元件关系和 Kirchhoff 定律来表示这些变量。我们选择电容电压和电感电流作为状态变量,因为它们可以方便地描述电路的动态行为。

定义状态变量

  • x 1 = V C 1 ( t ) x_1 = V_{C1}(t) x1=VC1(t): 电容 C 1 C_1 C1 两端的电压
  • x 2 = I L 1 ( t ) x_2 = I_{L1}(t) x2=IL1(t): 电感 L 1 L_1 L1 的电流
  • x 3 = V C 2 ( t ) x_3 = V_{C2}(t) x3=VC2(t): 电容 C 2 C_2 C2 两端的电压
  • x 4 = I L 2 ( t ) x_4 = I_{L2}(t) x4=IL2(t): 电感 L 2 L_2 L2 的电流

使用 KVL 和 KCL 建立方程

根据电路图,使用 Kirchhoff 电压定律(KVL)和 Kirchhoff 电流定律(KCL)可以得到以下关系:

  1. 电容 C 1 C_1 C1 的电流方程
    I C 1 ( t ) = C 1 d V C 1 ( t ) d t I_{C1}(t) = C_1 \frac{dV_{C1}(t)}{dt} IC1(t)=C1dtdVC1(t)
    I 1 = I C 1 + I R I_1 = I_{C1} + I_R I1=IC1+IR
    其中, I R = V − V C 1 R I_R = \frac{V - V_{C1}}{R} IR=RVVC1

  2. 电感 L 1 L_1 L1 的电压方程
    V L 1 ( t ) = L 1 d I L 1 ( t ) d t V_{L1}(t) = L_1 \frac{dI_{L1}(t)}{dt} VL1(t)=L1dtdIL1(t)
    V C 1 = V L 1 + V C 2 V_{C1} = V_{L1} + V_{C2} VC1=VL1+VC2

  3. 电容 C 2 C_2 C2 的电流方程
    I C 2 ( t ) = C 2 d V C 2 ( t ) d t I_{C2}(t) = C_2 \frac{dV_{C2}(t)}{dt} IC2(t)=C2dtdVC2(t)
    I L 1 = I C 2 + I L 2 I_{L1} = I_{C2} + I_{L2} IL1=IC2+IL2

  4. 电感 L 2 L_2 L2 的电压方程
    V L 2 ( t ) = L 2 d I L 2 ( t ) d t V_{L2}(t) = L_2 \frac{dI_{L2}(t)}{dt} VL2(t)=L2dtdIL2(t)
    V C 2 = V L 2 V_{C2} = V_{L2} VC2=VL2

状态方程

将这些方程写成状态空间形式:

  1. 对于电容 C 1 C_1 C1 两端的电压
    d x 1 d t = 1 C 1 ( I 1 − x 1 R ) = 1 C 1 ( I 1 − I R ) \frac{dx_1}{dt} = \frac{1}{C_1}(I_1 - \frac{x_1}{R}) = \frac{1}{C_1}(I_1 - I_R) dtdx1=C11(I1Rx1)=C11(I1IR)

  2. 对于电感 L 1 L_1 L1 的电流
    d x 2 d t = 1 L 1 ( x 1 − x 3 ) \frac{dx_2}{dt} = \frac{1}{L_1}(x_1 - x_3) dtdx2=L11(x1x3)

  3. 对于电容 C 2 C_2 C2 两端的电压
    d x 3 d t = 1 C 2 ( x 2 − x 4 ) \frac{dx_3}{dt} = \frac{1}{C_2}(x_2 - x_4) dtdx3=C21(x2x4)

  4. 对于电感 L 2 L_2 L2 的电流
    d x 4 d t = 1 L 2 ( x 3 ) \frac{dx_4}{dt} = \frac{1}{L_2}(x_3) dtdx4=L21(x3)

输入方程

假设输入电压为 V ( s ) V(s) V(s),状态方程与输入的关系为:

I 1 = V − x 1 R I_1 = \frac{V - x_1}{R} I1=RVx1

最终的状态方程可以表示为:

{ d x 1 d t = 1 C 1 ( V − x 1 R − I R ) d x 2 d t = 1 L 1 ( x 1 − x 3 ) d x 3 d t = 1 C 2 ( x 2 − x 4 ) d x 4 d t = 1 L 2 ( x 3 ) \begin{cases} \frac{dx_1}{dt} = \frac{1}{C_1}\left(\frac{V - x_1}{R} - I_R\right) \\ \frac{dx_2}{dt} = \frac{1}{L_1}(x_1 - x_3) \\ \frac{dx_3}{dt} = \frac{1}{C_2}(x_2 - x_4) \\ \frac{dx_4}{dt} = \frac{1}{L_2}(x_3) \end{cases} dtdx1=C11(RVx1IR)dtdx2=L11(x1x3)dtdx3=C21(x2x4)dtdx4=L21(x3)

这是该电路的状态空间方程组。通过这些方程,可以分析电路的动态响应。

在这里插入图片描述
在这里插入图片描述
要建立一个电路模型来表示水库的行为,我们需要决定使用哪种元件来模拟输入、水库本身以及变化的用水量。以下是一个可能的电路模型以及各个元件的对应关系:

电路模型元素对应关系

  1. 输入流量(泵的稳定流量)

    • 模拟泵的稳定流量,我们可以使用一个恒流源来表示输入流量,因为恒流源可以提供恒定的电流,就像泵提供恒定的水流量。
  2. 水库

    • 水库的容量可以用一个电容来表示。电容器的电荷积累类似于水库中的水量积累,电容的电压类似于水库中的水位。
  3. 用水量(变化的用水量)

    • 用水量可以用一个电阻来表示。电阻上的电流变化可以表示用水量的变化,电阻值的变化反映了用水速率的变化。

电路模型形式

我们需要一个电流源、一个电容和一个可变电阻来组成电路模型。

  1. 恒流源 ( I I I) 表示泵的恒定流量。
  2. 电容 ( C C C) 表示水库的容量,电容上的电压 ( V C V_C VC) 表示水库中的水位。
  3. 可变电阻 ( R R R) 表示用水量的变化,电阻值变化反映了用水速率的变化。

电路连接

  • 恒流源 I I I 连接到电容 C C C,表示泵向水库输送水。
  • 电容 C C C 连接到可变电阻 R R R,表示水库的水流向社区用水。
  • 可变电阻 R R R 另一端接地,表示水被消耗掉。

电路图示意

  I -----> |----C----R----|
                   |
                  Ground

描述

  • 恒流源 I I I:提供恒定的电流(泵的恒定流量)。
  • 电容 C C C:存储电荷(表示水库容量),电容电压表示水库水位。
  • 可变电阻 R R R:电流表示水的使用,电阻值的变化表示用水量的变化。

这个电路模型可以模拟水库的行为,恒流源提供恒定的流量,电容表示水库中的水量变化,可变电阻表示水的使用变化。通过调整电阻值,可以模拟不同时间段的用水量变化对水库水位的影响。

Chapter 6 Energy conserved transducer

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
为了证明线性传感器模型中 T E M T_{EM} TEM T M E T_{ME} TME 的单位是相同的,我们需要了解这两个参数的物理意义和它们的单位。

定义和单位

  1. T E M T_{EM} TEM T M E T_{ME} TME 的定义

    • T E M T_{EM} TEM 表示电磁耦合系数,通常用于描述电能转换为机械能的过程。
    • T M E T_{ME} TME 表示机电耦合系数,通常用于描述机械能转换为电能的过程。
  2. 单位分析

    • 假设电气变量为电压 V V V 和电流 I I I,机械变量为力 F F F 和速度 v v v(或力矩 T T T 和角速度 ω \omega ω)。

电磁转换( T E M T_{EM} TEM

在电磁转换过程中,电能转换为机械能。可以用以下关系表示:
P e l e c = V ⋅ I P_{elec} = V \cdot I Pelec=VI
P m e c h = F ⋅ v P_{mech} = F \cdot v Pmech=Fv

电磁转换耦合系数 T E M T_{EM} TEM 关系为:
F = T E M ⋅ I F = T_{EM} \cdot I F=TEMI
其中, F F F 的单位为牛顿(N), I I I 的单位为安培(A)。因此, T E M T_{EM} TEM 的单位为:
[ T E M ] = N A [T_{EM}] = \frac{N}{A} [TEM]=AN

机电转换( T M E T_{ME} TME

在机电转换过程中,机械能转换为电能。可以用以下关系表示:
P m e c h = F ⋅ v P_{mech} = F \cdot v Pmech=Fv
P e l e c = V ⋅ I P_{elec} = V \cdot I Pelec=VI

机电转换耦合系数 T M E T_{ME} TME 关系为:
V = T M E ⋅ v V = T_{ME} \cdot v V=TMEv
其中, V V V 的单位为伏特(V), v v v 的单位为米每秒(m/s)。因此, T M E T_{ME} TME 的单位为:
[ T M E ] = V m s = V ⋅ s m [T_{ME}] = \frac{V}{\frac{m}{s}} = \frac{V \cdot s}{m} [TME]=smV=mVs

验证单位相同

为了证明 T E M T_{EM} TEM T M E T_{ME} TME 的单位相同,我们可以使用电磁转换系数的等效表达式来重新定义机电转换系数:

从电磁转换关系式:
F = T E M ⋅ I F = T_{EM} \cdot I F=TEMI
力的单位 F F F 为牛顿(N),电流 I I I 的单位为安培(A)。因此, T E M T_{EM} TEM 的单位为:
[ T E M ] = N A [T_{EM}] = \frac{N}{A} [TEM]=AN

根据电功率和机械功率的等效关系:
V ⋅ I = F ⋅ v V \cdot I = F \cdot v VI=Fv

重新表达机电转换系数的单位:
T M E = V v = V m s = V ⋅ s m T_{ME} = \frac{V}{v} = \frac{V}{\frac{m}{s}} = \frac{V \cdot s}{m} TME=vV=smV=mVs

从电功率的单位分析:
1 V ⋅ 1 A = 1 W ( 瓦特 ) 1 V \cdot 1 A = 1 W \quad (\text{瓦特}) 1V1A=1W(瓦特)
而瓦特也等于牛顿·米每秒( N ⋅ m / s N \cdot m/s Nm/s),因此:
1 V ⋅ A = N ⋅ m s 1 V \cdot A = N \cdot \frac{m}{s} 1VA=Nsm

所以, T M E T_{ME} TME T E M T_{EM} TEM 的单位实际上是相同的。即:
N A = V ⋅ s m \frac{N}{A} = \frac{V \cdot s}{m} AN=mVs

因此,我们证明了线性传感器模型中 T E M T_{EM} TEM T M E T_{ME} TME 的单位是相同的。
在这里插入图片描述

Chapter 8 Elastisty(Lecture 6)

Problem 1

Derive the bulk modulus (Eq. 8.14) of an isotropic material from the generalized Hooke’s Laws.

Step 1/8
Start with the generalized Hooke’s Law for an isotropic material, which relates the stress tensor (σ) to the strain tensor (ε): σ = C ε where C is the fourth-order elasticity tensor.

Step 2/8
Consider a simple case of isotropic deformation, where the material is subjected to a uniform change in volume. In this case, the strain tensor can be written as: ε = εxx + εyy + εzz where εxx, εyy, and εzz are the normal strains in the x, y, and z directions, respectively.

Step 3/8
Assume that the material is linearly elastic, meaning that the stress-strain relationship is linear. In this case, the stress tensor can be written as: σ = λ ε + 2μ ε where λ and μ are the Lamé parameters, which are related to the bulk modulus (K) and shear modulus (G) of the material as follows: λ = K - 2/3G μ = G

Step 4/8
Substitute the expression for the stress tensor (σ) and the strain tensor (ε) into the generalized Hooke’s Law: λ ε + 2μ ε = C ε

Step 5/8
Simplify the equation by substituting the expressions for λ and μ: (K - 2/3G) ε + 2G ε = C ε

Step 6/8
Combine like terms: (K + 4/3G) ε = C ε

Step 7/8
Equate the coefficients of ε on both sides of the equation: K + 4/3G = C

Answer
Rearrange the equation to solve for the bulk modulus (K): K = C - 4/3G This is the expression for the bulk modulus (K) of an isotropic material derived from the generalized Hooke’s Laws.

在这里插入图片描述
在这里插入图片描述

Chapter 9 Structure (Lecture 7)

  1. 找出一根垂直硅梁在不超过其断裂应力的情况下的最大长度
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Chapter 10 Energy Methods

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值