Chapter 5 Lump Modeling
为了将机械系统转换为等效电路,我们需要将各个机械元件转换为相应的电气元件。以下是机械元件和其电气等效元件的对照关系:
- 质量(m) - 转换为 电感(L)
- 弹簧(k) - 转换为 电容(C)
- 阻尼器(b) - 转换为 电阻(R)
在机械系统中,力 F F F 对应电气系统中的电压 V V V,位移 x x x 对应电气系统中的电荷 q q q 或电流 i i i。
根据图片中的机械系统,可以逐步绘制等效电路:
机械系统描述
- 质量 m 1 m_1 m1 和 m 2 m_2 m2
- 弹簧 k 1 k_1 k1 和 k 2 k_2 k2
- 阻尼器 b b b
等效电路转换
- 质量 m 1 m_1 m1 和 m 2 m_2 m2 转换为电感 L 1 L_1 L1 和 L 2 L_2 L2
- 弹簧 k 1 k_1 k1 和 k 2 k_2 k2 转换为电容 C 1 C_1 C1 和 C 2 C_2 C2
- 阻尼器 b b b 转换为电阻 R R R
具体转换步骤
- 弹簧
k
1
k_1
k1 转换为 电容
C
1
C_1
C1:
C 1 = 1 k 1 C_1 = \frac{1}{k_1} C1=k11 - 质量
m
1
m_1
m1 转换为 电感
L
1
L_1
L1:
L 1 = m 1 L_1 = m_1 L1=m1 - 阻尼器
b
b
b 转换为 电阻
R
R
R:
R = b R = b R=b - 弹簧
k
2
k_2
k2 转换为 电容
C
2
C_2
C2:
C 2 = 1 k 2 C_2 = \frac{1}{k_2} C2=k21 - 质量
m
2
m_2
m2 转换为 电感
L
2
L_2
L2:
L 2 = m 2 L_2 = m_2 L2=m2
绘制等效电路
- 电压源 V V V 对应力 F F F
- 电容 C 1 C_1 C1 串联电阻 R R R,然后与电感 L 1 L_1 L1 串联
- 电感 L 1 L_1 L1 后接电容 C 2 C_2 C2 串联电感 L 2 L_2 L2
最终得到的等效电路如下图所示:
V --> |----C1----R----L1----C2----L2----|
要找到电路的传递函数 I 1 ( s ) V ( s ) \frac{I_1(s)}{V(s)} V(s)I1(s),我们需要使用复阻抗分析。该电路包含一个电阻 R R R、两个电容 C 1 C_1 C1 和 C 2 C_2 C2,以及两个电感 L 1 L_1 L1 和 L 2 L_2 L2。我们首先计算每个元件的复阻抗。
复阻抗
- 电阻 R R R:阻抗 Z R = R Z_R = R ZR=R
- 电容 C C C:阻抗 Z C = 1 s C Z_C = \frac{1}{sC} ZC=sC1
- 电感 L L L:阻抗 Z L = s L Z_L = sL ZL=sL
对于图中的电路:
- 电容 C 1 C_1 C1 的阻抗: Z C 1 = 1 s C 1 Z_{C1} = \frac{1}{sC_1} ZC1=sC11
- 电感 L 1 L_1 L1 的阻抗: Z L 1 = s L 1 Z_{L1} = sL_1 ZL1=sL1
- 电容 C 2 C_2 C2 的阻抗: Z C 2 = 1 s C 2 Z_{C2} = \frac{1}{sC_2} ZC2=sC21
- 电感 L 2 L_2 L2 的阻抗: Z L 2 = s L 2 Z_{L2} = sL_2 ZL2=sL2
等效阻抗计算
首先,找到电路的总阻抗。
并联阻抗
C
2
C_2
C2 和
L
2
L_2
L2 并联:
Z
C
2
L
2
=
(
1
Z
C
2
+
1
Z
L
2
)
−
1
=
(
1
1
s
C
2
+
1
s
L
2
)
−
1
=
(
s
C
2
+
1
s
L
2
)
−
1
=
1
s
C
2
+
1
s
L
2
=
s
L
2
s
2
L
2
C
2
+
1
Z_{C2L2} = \left( \frac{1}{Z_{C2}} + \frac{1}{Z_{L2}} \right)^{-1} = \left( \frac{1}{\frac{1}{sC_2}} + \frac{1}{sL_2} \right)^{-1} = \left( sC_2 + \frac{1}{sL_2} \right)^{-1} = \frac{1}{sC_2 + \frac{1}{sL_2}} = \frac{sL_2}{s^2L_2C_2 + 1}
ZC2L2=(ZC21+ZL21)−1=(sC211+sL21)−1=(sC2+sL21)−1=sC2+sL211=s2L2C2+1sL2
串联阻抗
将
Z
C
2
L
2
Z_{C2L2}
ZC2L2 与
L
1
L_1
L1 串联:
Z
L
1
C
2
L
2
=
Z
L
1
+
Z
C
2
L
2
=
s
L
1
+
s
L
2
s
2
L
2
C
2
+
1
Z_{L1C2L2} = Z_{L1} + Z_{C2L2} = sL_1 + \frac{sL_2}{s^2L_2C_2 + 1}
ZL1C2L2=ZL1+ZC2L2=sL1+s2L2C2+1sL2
将
Z
L
1
C
2
L
2
Z_{L1C2L2}
ZL1C2L2 与
C
1
C_1
C1 串联:
Z
t
o
t
a
l
=
Z
C
1
+
Z
L
1
C
2
L
2
=
1
s
C
1
+
s
L
1
+
s
L
2
s
2
L
2
C
2
+
1
Z_{total} = Z_{C1} + Z_{L1C2L2} = \frac{1}{sC_1} + sL_1 + \frac{sL_2}{s^2L_2C_2 + 1}
Ztotal=ZC1+ZL1C2L2=sC11+sL1+s2L2C2+1sL2
最后,添加电阻
R
R
R:
Z
t
o
t
a
l
=
R
+
Z
C
1
+
Z
L
1
C
2
L
2
=
R
+
1
s
C
1
+
s
L
1
+
s
L
2
s
2
L
2
C
2
+
1
Z_{total} = R + Z_{C1} + Z_{L1C2L2} = R + \frac{1}{sC_1} + sL_1 + \frac{sL_2}{s^2L_2C_2 + 1}
Ztotal=R+ZC1+ZL1C2L2=R+sC11+sL1+s2L2C2+1sL2
转换为传递函数
为了找到传递函数 I 1 ( s ) V ( s ) \frac{I_1(s)}{V(s)} V(s)I1(s),我们需要找到 I 1 ( s ) I_1(s) I1(s) 与 V ( s ) V(s) V(s) 的关系:
V ( s ) = I 1 ( s ) ⋅ Z t o t a l V(s) = I_1(s) \cdot Z_{total} V(s)=I1(s)⋅Ztotal
因此:
I 1 ( s ) = V ( s ) Z t o t a l I_1(s) = \frac{V(s)}{Z_{total}} I1(s)=ZtotalV(s)
所以,传递函数为:
I 1 ( s ) V ( s ) = 1 R + 1 s C 1 + s L 1 + s L 2 s 2 L 2 C 2 + 1 \frac{I_1(s)}{V(s)} = \frac{1}{R + \frac{1}{sC_1} + sL_1 + \frac{sL_2}{s^2L_2C_2 + 1}} V(s)I1(s)=R+sC11+sL1+s2L2C2+1sL21
通过进一步简化这个表达式可以得到最终的传递函数。
为了给电路问题 5.3 建立一组状态方程,我们需要定义状态变量并使用电路中的元件关系和 Kirchhoff 定律来表示这些变量。我们选择电容电压和电感电流作为状态变量,因为它们可以方便地描述电路的动态行为。
定义状态变量
- x 1 = V C 1 ( t ) x_1 = V_{C1}(t) x1=VC1(t): 电容 C 1 C_1 C1 两端的电压
- x 2 = I L 1 ( t ) x_2 = I_{L1}(t) x2=IL1(t): 电感 L 1 L_1 L1 的电流
- x 3 = V C 2 ( t ) x_3 = V_{C2}(t) x3=VC2(t): 电容 C 2 C_2 C2 两端的电压
- x 4 = I L 2 ( t ) x_4 = I_{L2}(t) x4=IL2(t): 电感 L 2 L_2 L2 的电流
使用 KVL 和 KCL 建立方程
根据电路图,使用 Kirchhoff 电压定律(KVL)和 Kirchhoff 电流定律(KCL)可以得到以下关系:
-
电容 C 1 C_1 C1 的电流方程:
I C 1 ( t ) = C 1 d V C 1 ( t ) d t I_{C1}(t) = C_1 \frac{dV_{C1}(t)}{dt} IC1(t)=C1dtdVC1(t)
I 1 = I C 1 + I R I_1 = I_{C1} + I_R I1=IC1+IR
其中, I R = V − V C 1 R I_R = \frac{V - V_{C1}}{R} IR=RV−VC1 -
电感 L 1 L_1 L1 的电压方程:
V L 1 ( t ) = L 1 d I L 1 ( t ) d t V_{L1}(t) = L_1 \frac{dI_{L1}(t)}{dt} VL1(t)=L1dtdIL1(t)
V C 1 = V L 1 + V C 2 V_{C1} = V_{L1} + V_{C2} VC1=VL1+VC2 -
电容 C 2 C_2 C2 的电流方程:
I C 2 ( t ) = C 2 d V C 2 ( t ) d t I_{C2}(t) = C_2 \frac{dV_{C2}(t)}{dt} IC2(t)=C2dtdVC2(t)
I L 1 = I C 2 + I L 2 I_{L1} = I_{C2} + I_{L2} IL1=IC2+IL2 -
电感 L 2 L_2 L2 的电压方程:
V L 2 ( t ) = L 2 d I L 2 ( t ) d t V_{L2}(t) = L_2 \frac{dI_{L2}(t)}{dt} VL2(t)=L2dtdIL2(t)
V C 2 = V L 2 V_{C2} = V_{L2} VC2=VL2
状态方程
将这些方程写成状态空间形式:
-
对于电容 C 1 C_1 C1 两端的电压:
d x 1 d t = 1 C 1 ( I 1 − x 1 R ) = 1 C 1 ( I 1 − I R ) \frac{dx_1}{dt} = \frac{1}{C_1}(I_1 - \frac{x_1}{R}) = \frac{1}{C_1}(I_1 - I_R) dtdx1=C11(I1−Rx1)=C11(I1−IR) -
对于电感 L 1 L_1 L1 的电流:
d x 2 d t = 1 L 1 ( x 1 − x 3 ) \frac{dx_2}{dt} = \frac{1}{L_1}(x_1 - x_3) dtdx2=L11(x1−x3) -
对于电容 C 2 C_2 C2 两端的电压:
d x 3 d t = 1 C 2 ( x 2 − x 4 ) \frac{dx_3}{dt} = \frac{1}{C_2}(x_2 - x_4) dtdx3=C21(x2−x4) -
对于电感 L 2 L_2 L2 的电流:
d x 4 d t = 1 L 2 ( x 3 ) \frac{dx_4}{dt} = \frac{1}{L_2}(x_3) dtdx4=L21(x3)
输入方程
假设输入电压为 V ( s ) V(s) V(s),状态方程与输入的关系为:
I 1 = V − x 1 R I_1 = \frac{V - x_1}{R} I1=RV−x1
最终的状态方程可以表示为:
{ d x 1 d t = 1 C 1 ( V − x 1 R − I R ) d x 2 d t = 1 L 1 ( x 1 − x 3 ) d x 3 d t = 1 C 2 ( x 2 − x 4 ) d x 4 d t = 1 L 2 ( x 3 ) \begin{cases} \frac{dx_1}{dt} = \frac{1}{C_1}\left(\frac{V - x_1}{R} - I_R\right) \\ \frac{dx_2}{dt} = \frac{1}{L_1}(x_1 - x_3) \\ \frac{dx_3}{dt} = \frac{1}{C_2}(x_2 - x_4) \\ \frac{dx_4}{dt} = \frac{1}{L_2}(x_3) \end{cases} ⎩ ⎨ ⎧dtdx1=C11(RV−x1−IR)dtdx2=L11(x1−x3)dtdx3=C21(x2−x4)dtdx4=L21(x3)
这是该电路的状态空间方程组。通过这些方程,可以分析电路的动态响应。
要建立一个电路模型来表示水库的行为,我们需要决定使用哪种元件来模拟输入、水库本身以及变化的用水量。以下是一个可能的电路模型以及各个元件的对应关系:
电路模型元素对应关系
-
输入流量(泵的稳定流量):
- 模拟泵的稳定流量,我们可以使用一个恒流源来表示输入流量,因为恒流源可以提供恒定的电流,就像泵提供恒定的水流量。
-
水库:
- 水库的容量可以用一个电容来表示。电容器的电荷积累类似于水库中的水量积累,电容的电压类似于水库中的水位。
-
用水量(变化的用水量):
- 用水量可以用一个电阻来表示。电阻上的电流变化可以表示用水量的变化,电阻值的变化反映了用水速率的变化。
电路模型形式
我们需要一个电流源、一个电容和一个可变电阻来组成电路模型。
- 恒流源 ( I I I) 表示泵的恒定流量。
- 电容 ( C C C) 表示水库的容量,电容上的电压 ( V C V_C VC) 表示水库中的水位。
- 可变电阻 ( R R R) 表示用水量的变化,电阻值变化反映了用水速率的变化。
电路连接
- 恒流源 I I I 连接到电容 C C C,表示泵向水库输送水。
- 电容 C C C 连接到可变电阻 R R R,表示水库的水流向社区用水。
- 可变电阻 R R R 另一端接地,表示水被消耗掉。
电路图示意
I -----> |----C----R----|
|
Ground
描述
- 恒流源 I I I:提供恒定的电流(泵的恒定流量)。
- 电容 C C C:存储电荷(表示水库容量),电容电压表示水库水位。
- 可变电阻 R R R:电流表示水的使用,电阻值的变化表示用水量的变化。
这个电路模型可以模拟水库的行为,恒流源提供恒定的流量,电容表示水库中的水量变化,可变电阻表示水的使用变化。通过调整电阻值,可以模拟不同时间段的用水量变化对水库水位的影响。
Chapter 6 Energy conserved transducer
为了证明线性传感器模型中
T
E
M
T_{EM}
TEM 和
T
M
E
T_{ME}
TME 的单位是相同的,我们需要了解这两个参数的物理意义和它们的单位。
定义和单位
-
T E M T_{EM} TEM 和 T M E T_{ME} TME 的定义:
- T E M T_{EM} TEM 表示电磁耦合系数,通常用于描述电能转换为机械能的过程。
- T M E T_{ME} TME 表示机电耦合系数,通常用于描述机械能转换为电能的过程。
-
单位分析:
- 假设电气变量为电压 V V V 和电流 I I I,机械变量为力 F F F 和速度 v v v(或力矩 T T T 和角速度 ω \omega ω)。
电磁转换( T E M T_{EM} TEM)
在电磁转换过程中,电能转换为机械能。可以用以下关系表示:
P
e
l
e
c
=
V
⋅
I
P_{elec} = V \cdot I
Pelec=V⋅I
P
m
e
c
h
=
F
⋅
v
P_{mech} = F \cdot v
Pmech=F⋅v
电磁转换耦合系数
T
E
M
T_{EM}
TEM 关系为:
F
=
T
E
M
⋅
I
F = T_{EM} \cdot I
F=TEM⋅I
其中,
F
F
F 的单位为牛顿(N),
I
I
I 的单位为安培(A)。因此,
T
E
M
T_{EM}
TEM 的单位为:
[
T
E
M
]
=
N
A
[T_{EM}] = \frac{N}{A}
[TEM]=AN
机电转换( T M E T_{ME} TME)
在机电转换过程中,机械能转换为电能。可以用以下关系表示:
P
m
e
c
h
=
F
⋅
v
P_{mech} = F \cdot v
Pmech=F⋅v
P
e
l
e
c
=
V
⋅
I
P_{elec} = V \cdot I
Pelec=V⋅I
机电转换耦合系数
T
M
E
T_{ME}
TME 关系为:
V
=
T
M
E
⋅
v
V = T_{ME} \cdot v
V=TME⋅v
其中,
V
V
V 的单位为伏特(V),
v
v
v 的单位为米每秒(m/s)。因此,
T
M
E
T_{ME}
TME 的单位为:
[
T
M
E
]
=
V
m
s
=
V
⋅
s
m
[T_{ME}] = \frac{V}{\frac{m}{s}} = \frac{V \cdot s}{m}
[TME]=smV=mV⋅s
验证单位相同
为了证明 T E M T_{EM} TEM 和 T M E T_{ME} TME 的单位相同,我们可以使用电磁转换系数的等效表达式来重新定义机电转换系数:
从电磁转换关系式:
F
=
T
E
M
⋅
I
F = T_{EM} \cdot I
F=TEM⋅I
力的单位
F
F
F 为牛顿(N),电流
I
I
I 的单位为安培(A)。因此,
T
E
M
T_{EM}
TEM 的单位为:
[
T
E
M
]
=
N
A
[T_{EM}] = \frac{N}{A}
[TEM]=AN
根据电功率和机械功率的等效关系:
V
⋅
I
=
F
⋅
v
V \cdot I = F \cdot v
V⋅I=F⋅v
重新表达机电转换系数的单位:
T
M
E
=
V
v
=
V
m
s
=
V
⋅
s
m
T_{ME} = \frac{V}{v} = \frac{V}{\frac{m}{s}} = \frac{V \cdot s}{m}
TME=vV=smV=mV⋅s
从电功率的单位分析:
1
V
⋅
1
A
=
1
W
(
瓦特
)
1 V \cdot 1 A = 1 W \quad (\text{瓦特})
1V⋅1A=1W(瓦特)
而瓦特也等于牛顿·米每秒(
N
⋅
m
/
s
N \cdot m/s
N⋅m/s),因此:
1
V
⋅
A
=
N
⋅
m
s
1 V \cdot A = N \cdot \frac{m}{s}
1V⋅A=N⋅sm
所以,
T
M
E
T_{ME}
TME 和
T
E
M
T_{EM}
TEM 的单位实际上是相同的。即:
N
A
=
V
⋅
s
m
\frac{N}{A} = \frac{V \cdot s}{m}
AN=mV⋅s
因此,我们证明了线性传感器模型中
T
E
M
T_{EM}
TEM 和
T
M
E
T_{ME}
TME 的单位是相同的。
Chapter 8 Elastisty(Lecture 6)
Problem 1
Derive the bulk modulus (Eq. 8.14) of an isotropic material from the generalized Hooke’s Laws.
Step 1/8
Start with the generalized Hooke’s Law for an isotropic material, which relates the stress tensor (σ) to the strain tensor (ε): σ = C ε where C is the fourth-order elasticity tensor.
Step 2/8
Consider a simple case of isotropic deformation, where the material is subjected to a uniform change in volume. In this case, the strain tensor can be written as: ε = εxx + εyy + εzz where εxx, εyy, and εzz are the normal strains in the x, y, and z directions, respectively.
Step 3/8
Assume that the material is linearly elastic, meaning that the stress-strain relationship is linear. In this case, the stress tensor can be written as: σ = λ ε + 2μ ε where λ and μ are the Lamé parameters, which are related to the bulk modulus (K) and shear modulus (G) of the material as follows: λ = K - 2/3G μ = G
Step 4/8
Substitute the expression for the stress tensor (σ) and the strain tensor (ε) into the generalized Hooke’s Law: λ ε + 2μ ε = C ε
Step 5/8
Simplify the equation by substituting the expressions for λ and μ: (K - 2/3G) ε + 2G ε = C ε
Step 6/8
Combine like terms: (K + 4/3G) ε = C ε
Step 7/8
Equate the coefficients of ε on both sides of the equation: K + 4/3G = C
Answer
Rearrange the equation to solve for the bulk modulus (K): K = C - 4/3G This is the expression for the bulk modulus (K) of an isotropic material derived from the generalized Hooke’s Laws.
Chapter 9 Structure (Lecture 7)
- 找出一根垂直硅梁在不超过其断裂应力的情况下的最大长度
Chapter 10 Energy Methods