数据结构与算法学习四之简单排序(二)选择排序

选择排序

一、关于选择排序

      选择排序是排序算法中最简单的一种,它的工作过程是基于多次重复性的遍历当前数字集合得出并最大值/最小值并剔除的行为来进行的。

二、工作原理

选择排序是一种简单直观的排序算法。它的工作原理是:
       1.每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处 的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引.
      2. 交换第一个索引处和最小值所在的索引处的值
在这里插入图片描述

三、工作过程及代码

①重复(元素个数-1)次,执行次数为满前执行②,全部执行完后退出

②把第一个没有排序过的元素设置为最小值

③遍历每个没有排序过的元素,全部遍历前执行④,全部遍历后,执行⑤

④ 如果元素 小于现在的最小值,将此元素设置成为新的最小值,继续③

⑤将最小值和第一个没有排序过的位置交换 回到①
在这里插入图片描述


import java.util.Arrays;

public class Selection {
    public static void selectionSort(Comparable[] array){
        for(int i=0;i<array.length;i++){
            //定义一个变量,记录最小元素所在的索引,默认为参与选择排序的第一个元素所在的位置
           int minIndex=i;
            for(int j=i+1;j<array.length;j++){
                //需要比较最小索引minIndex处的值和j索引处的值;
                if(compare(array[minIndex],array[j])){
                    minIndex=j;
                }
            }
            //交换最小元素所在索引minIndex处的值和索引i处的值
            swap(array,minIndex,i);
        }

    }

//    比较v元素是否大于w元素
public static boolean compare(Comparable v,Comparable w){
        return v.compareTo(w)>0;
}
//    交数组元素i和j交换位置
    public static void swap(Comparable[] array,int i,int j){
        Comparable temp=array[i];
        array[i]=array[j];
        array[j]=temp;

    }
    public static void main(String[] args) {
        
        Integer[] array = {4,6,8,7,9,2,10,1};
        Selection.selectionSort(array);
        System.out.println(Arrays.toString(array));//[1, 2, 4, 6, 7, 8, 9, 10]
    }
}

四、选择排序的时间复杂度分析

选择排序使用了双层for循环,其中外层循环完成了数据交换,内层循环完成了数据比较,所以我们分别统计数据 交换次数和数据比较次数:
数据比较次数:
(N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
数据交换次数:
N-1
时间复杂度:N2 /2-N/2+(N-1)=N2 /2+N/2-1;
根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N2);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_不知名小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值