torch.nn.init.uniform_

nn.init.uniform_ 是 PyTorch 中用于初始化张量(tensor)的一个函数,它的作用是将张量的值填充为从均匀分布中采样的随机数。

详细说明:

  1. 函数

    torch.nn.init.uniform_(tensor, a=0., b=1.)
    
    • tensor:需要被初始化的张量。
    • a:均匀分布的下界,默认值为 0.0。
    • b:均匀分布的上界,默认值为 1.0。
  2. 作用

    • 该函数会将输入张量的值填充为从均匀分布 ( U(a, b) ) 中采样的随机数。均匀分布 ( U(a, b) ) 的概率密度函数在区间 ([a, b]) 内是常数,在区间外是 0。
    • 这在深度学习中通常用于初始化神经网络的权重参数。通过将权重初始化为均匀分布的随机值,可以打破对称性,使神经网络在训练时能够有效学习。
  3. 示例

    import torch
    import torch.nn as nn
    
    # 创建一个 3x3 的张量
    weights = torch.empty(3, 3)
    
    # 使用均匀分布初始化张量,范围是 [-0.1, 0.1]
    nn.init.uniform_(weights, a=-0.1, b=0.1)
    
    print(weights)
    

    输出:

    tensor([[ 0.0543, -0.0321,  0.0892],
            [-0.0987,  0.0456, -0.0123],
            [ 0.0765, -0.0654,  0.0345]])
    
  4. 常见用途

    • 在神经网络的初始化中,均匀分布初始化是一种常见的策略。它可以帮助模型在训练初期避免权重值过大或过小,从而促进梯度的有效传播。
    • 与 Xavier 初始化(也称为 Glorot 初始化)和 He 初始化等其他初始化方法相比,均匀分布初始化简单直接,但在某些情况下可能不如这些方法效果好。
  5. 注意事项

    • 选择合适的初始化方法和范围对模型的训练和性能至关重要。均匀分布初始化的范围通常需要根据网络的结构和任务进行调整。
    • nn.init.uniform_torch.nn.init.uniform 是同一个函数,区别在于后者返回初始化后的张量,而前者直接在原地(in-place)修改输入张量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值