机试题——购物系统的降级策略

题目描述

在一个购物APP中,有一个核心购物系统,它的接口被 N 个客户端调用。这些客户端负责处理来自不同渠道的交易请求,并将这些请求发送给核心购物系统。每个客户端有不同的调用量 R = [R1, R2, ..., RN],表示在一定时间内,这个客户端向核心购物系统发送的交易请求的数量。核心购物系统必须能够及时响应所有的请求,以确保交易顺利进行。

然而,最近核心购物系统出现了集群故障,导致交易请求的处理速度变慢。为了避免系统崩溃,必须临时降级并限制调用量。具体而言,核心购物系统能接受的最大调用量为 cnt,如果客户端发送的请求总量超过 cnt,则必须限制一些系统的请求数量,以确保核心购物系统不会超负荷工作。

现在需要一个降级规则,来限制客户端的请求数量。规则如下:

  1. 如果 sum(R1, R2, ..., RN) 小于等于 cnt,则全部可以正常调用,返回 -1
  2. 如果 sum(R1, R2, ..., RN) 大于 cnt,则必须设定一个阈值 value,如果某个客户端发起的调用量超过 value,则该客户端的请求数量必须限制为 value。其余未达到 value 的系统可以正常发起调用。要求求出最大的 valuevalue 可以为 0)。

为了保证交易的顺利进行,必须保证客户端请求的数量不会超过核心购物系统的最大调用量,同时最大的 value 要尽可能的大。需要高效地解决这个问题,以确保购物系统的高效性。


输入描述

  • 第一行:每个客户端的调用量(整型数组)。
  • 第二行:核心购物系统的最大调用量 cnt

数据范围

  • 0 < R.length ≤ 10^5
  • 0 ≤ R[i] ≤ 10^5
  • 0 ≤ cnt ≤ 10^9

输出描述

调用量的阈值 value


用例输入

样例一

输入:

1 4 2 5 5 1 6
13
2

样例解释
因为 1 + 4 + 2 + 5 + 5 + 1 + 6 > 13,将 value 设置为 2,则 1 + 2 + 2 + 2 + 2 + 1 + 2 = 12 < 13。所以 value2

样例二

输入:

1 7 8 8 1 0 2 4 9
7
0

样例解释
因为即使 value 设置为 11 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 > 7 也不满足,所以 value 只能为 0


解题思路

  1. 问题分析

    • 如果所有客户端的调用量总和不超过 cnt,则直接返回 -1
    • 否则,需要找到一个最大的 value,使得将所有超过 value 的客户端调用量限制为 value 后,总和不超过 cnt
  2. 算法选择

    • 使用二分查找来确定最大的 value
    • 对于每个候选的 value,计算所有客户端调用量限制后的总和,判断是否小于等于 cnt
  3. 复杂度分析

    • 二分查找的范围是 [0, max(R)],每次检查的时间复杂度为 O(N)
    • 总时间复杂度为 O(N log(max(R)))

代码

#include <iostream>
#include <vector>
#include <sstream>
#include <algorithm>
using namespace std;

// 检查当前 value 是否满足条件
bool check(int mid, long long target, vector<int>& data) {
    long long temp = 0;
    for (int i = 0; i < data.size(); i++) {
        temp += min(data[i], mid);
    }
    return temp <= target;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    // 读取输入
    string input;
    getline(cin, input);
    istringstream is(input);
    int num;
    vector<int> data;
    while (is >> num) {
        data.push_back(num);
    }

    long long target;
    cin >> target;

    // 计算总和
    long long temp = 0;
    for (int i = 0; i < data.size(); i++) {
        temp += data[i];
    }

    // 如果总和小于等于 target,直接返回 -1
    if (temp <= target) {
        cout << -1;
        return 0;
    }

    // 二分查找
    int l = 0, r = *max_element(data.begin(), data.end());
    int res = r;
    while (l <= r) {
        int mid = (l + r) / 2;
        if (check(mid, target, data)) {
            res = mid;
            l = mid + 1;
        } else {
            r = mid - 1;
        }
    }

    // 输出结果
    cout << res;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值