题目描述
在一个购物APP中,有一个核心购物系统,它的接口被 N
个客户端调用。这些客户端负责处理来自不同渠道的交易请求,并将这些请求发送给核心购物系统。每个客户端有不同的调用量 R = [R1, R2, ..., RN]
,表示在一定时间内,这个客户端向核心购物系统发送的交易请求的数量。核心购物系统必须能够及时响应所有的请求,以确保交易顺利进行。
然而,最近核心购物系统出现了集群故障,导致交易请求的处理速度变慢。为了避免系统崩溃,必须临时降级并限制调用量。具体而言,核心购物系统能接受的最大调用量为 cnt
,如果客户端发送的请求总量超过 cnt
,则必须限制一些系统的请求数量,以确保核心购物系统不会超负荷工作。
现在需要一个降级规则,来限制客户端的请求数量。规则如下:
- 如果
sum(R1, R2, ..., RN)
小于等于cnt
,则全部可以正常调用,返回-1
。 - 如果
sum(R1, R2, ..., RN)
大于cnt
,则必须设定一个阈值value
,如果某个客户端发起的调用量超过value
,则该客户端的请求数量必须限制为value
。其余未达到value
的系统可以正常发起调用。要求求出最大的value
(value
可以为 0)。
为了保证交易的顺利进行,必须保证客户端请求的数量不会超过核心购物系统的最大调用量,同时最大的 value
要尽可能的大。需要高效地解决这个问题,以确保购物系统的高效性。
输入描述
- 第一行:每个客户端的调用量(整型数组)。
- 第二行:核心购物系统的最大调用量
cnt
。
数据范围:
0 < R.length ≤ 10^5
0 ≤ R[i] ≤ 10^5
0 ≤ cnt ≤ 10^9
输出描述
调用量的阈值 value
。
用例输入
样例一
输入:
1 4 2 5 5 1 6
13
2
样例解释:
因为 1 + 4 + 2 + 5 + 5 + 1 + 6 > 13
,将 value
设置为 2
,则 1 + 2 + 2 + 2 + 2 + 1 + 2 = 12 < 13
。所以 value
为 2
。
样例二
输入:
1 7 8 8 1 0 2 4 9
7
0
样例解释:
因为即使 value
设置为 1
,1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 > 7
也不满足,所以 value
只能为 0
。
解题思路
-
问题分析:
- 如果所有客户端的调用量总和不超过
cnt
,则直接返回-1
。 - 否则,需要找到一个最大的
value
,使得将所有超过value
的客户端调用量限制为value
后,总和不超过cnt
。
- 如果所有客户端的调用量总和不超过
-
算法选择:
- 使用二分查找来确定最大的
value
。 - 对于每个候选的
value
,计算所有客户端调用量限制后的总和,判断是否小于等于cnt
。
- 使用二分查找来确定最大的
-
复杂度分析:
- 二分查找的范围是
[0, max(R)]
,每次检查的时间复杂度为O(N)
。 - 总时间复杂度为
O(N log(max(R)))
。
- 二分查找的范围是
代码
#include <iostream>
#include <vector>
#include <sstream>
#include <algorithm>
using namespace std;
// 检查当前 value 是否满足条件
bool check(int mid, long long target, vector<int>& data) {
long long temp = 0;
for (int i = 0; i < data.size(); i++) {
temp += min(data[i], mid);
}
return temp <= target;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
// 读取输入
string input;
getline(cin, input);
istringstream is(input);
int num;
vector<int> data;
while (is >> num) {
data.push_back(num);
}
long long target;
cin >> target;
// 计算总和
long long temp = 0;
for (int i = 0; i < data.size(); i++) {
temp += data[i];
}
// 如果总和小于等于 target,直接返回 -1
if (temp <= target) {
cout << -1;
return 0;
}
// 二分查找
int l = 0, r = *max_element(data.begin(), data.end());
int res = r;
while (l <= r) {
int mid = (l + r) / 2;
if (check(mid, target, data)) {
res = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
// 输出结果
cout << res;
return 0;
}