题目描述
小明在一个足球场上踢球,需要绕过障碍物把球踢到球门里。足球场用大小为 ( M * M ) 的正方形网格表示,其中每个元素可以是以下几种类型:
'X'
:小明的初始位置,球场上只有一个。'0'
:空地,可以在上面自由行走。'1'
:障碍物,不能通行。'B'
:足球,球场上只有一个。'G'
:球门,球场上只有一个。
小明的移动规则如下:
- 初始时,小明和球可能不相邻。小明需要先走到球的位置才能开始踢球。
- 当小明移动到球的相邻格子后,继续向球的方向移动,会将球踢到同方向相邻的格子。
- 如果球移动前方会碰到障碍物或边界,踢球无效,小明和球的位置保持不变。
目标是计算小明把球踢到球门里需要踢球的最少次数。如果无法踢到球门,返回 -1
。
输入描述
输入第一行是一个正整数 ( M )(( 5 \leq M \leq 20 ))。
接下来是一个 ( M \times M ) 的矩阵,每行包含 ( M ) 个字符,字符可以是 '0'
、'1'
、'B'
、'G'
或 'X'
。
输出描述
返回小明把球踢到球门里需要踢球的最少次数。如果无法踢到球门,返回 -1
。
用例输入
输入:
5
0 0 0 0 0
0 0 0 0 G
0 0 B 0 0
X 1 0 0 0
0 0 0 0 0
输出:
3
说明:
小明把球踢到球门里最少需要踢 3 次球。
解题思路
问题分析
- 目标:计算小明把球踢到球门里需要踢球的最少次数。
- 关键点:
- 小明需要先走到球的位置才能开始踢球。
- 踢球时,球的移动方向必须与小明的移动方向相同。
- 如果球移动前方会碰到障碍物或边界,踢球无效。
- 使用广度优先搜索(BFS)来寻找最短路径。
算法设计
-
数据结构:
- 使用二维数组
mp
存储足球场的布局。 - 使用四维数组
dis
存储从初始状态到当前状态的最少踢球次数。 - 使用队列
q
存储当前状态,每个状态包含小明的位置和球的位置。
- 使用二维数组
-
初始化:
- 读取输入,找到小明、球和球门的位置。
- 初始化
dis
数组,所有值设为-1
,表示未访问。
-
广度优先搜索(BFS):
- 从初始状态开始,将小明和球的位置加入队列。
- 每次从队列中取出一个状态,尝试向四个方向移动。
- 如果移动到球的相邻位置,尝试踢球,更新球的位置。
- 如果球移动到球门位置,记录踢球次数并返回。
- 如果移动到非障碍物位置,更新小明的位置,但球的位置不变。
- 将新状态加入队列,继续搜索。
-
结果计算:
- 如果找到球门,返回最少踢球次数。
- 如果队列为空且未找到球门,返回
-1
。
代码实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<vector>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<set>
#include<list>
#include<sstream>
#include<bitset>
#include<stack>
#include<climits>
#include<iomanip>
#include<cstdint>
using namespace std;
int n;
int fe, fd;// 起始位置
int se, sd;// 足球位置
int ee, ed;// 结束位置
int dx[] = { 0, 0, 1, -1 };
int dy[] = { 1, -1, 0, 0 };
char mp[30][30];
int dis[50][50][50][50];// 人物位置和球的位置
int bfs() {
queue<vector<int>> q;
q.push({ fe,fd,se,sd });
dis[fe][fd][se][sd] = 0;
int res = -1;
while (!q.empty()) {
// 当前人物状态
int cx = q.front()[0];
int cy = q.front()[1];
// 当前足球状态
int fx = q.front()[2];
int fy = q.front()[3];
q.pop();
for (int i = 0; i < 4; i++) {
int nx = cx + dx[i], ny = cy + dy[i]; // 计算新的位置
if (nx < 0 || nx >= n || ny < 0 || ny >= n || mp[nx][ny] == '1') continue;
if (nx == fx && ny == fy) {
// 尝试踢球
int nfx = fx + dx[i], nfy = fy + dy[i]; // 计算踢球后新的球位置
if (nfx < 0 || nfx >= n || nfy < 0 || nfy >= n || mp[nfx][nfy] == '1') continue;
if (dis[nx][ny][nfx][nfy] == -1) {
dis[nx][ny][nfx][nfy] = dis[cx][cy][fx][fy] + 1; // 更新距离
q.push({ nx, ny, nfx, nfy }); // 将新状态入队
if (nfx == ee && nfy == ed) { // 如果球已经进了球门
if (res== -1 || res > dis[nx][ny][nfx][nfy]) {
res = dis[nx][ny][nfx][nfy]; // 更新最短路径
}
}
}
}
else {// 球没动
if (dis[nx][ny][fx][fy] == -1) {
dis[nx][ny][fx][fy] = dis[cx][cy][fx][fy]; // 保持距离不变
q.push({ nx, ny, fx, fy });
}
}
}
}
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> mp[i][j];
if (mp[i][j] == 'B') {
se = i, sd = j;
}
if (mp[i][j] == 'G') {
ee = i, ed = j;
}
if (mp[i][j] == 'X') {
fe = i, fd = j;
}
}
}
memset(dis, -1, sizeof(dis));
cout<<bfs();
}