机试题——小明踢足球

题目描述

小明在一个足球场上踢球,需要绕过障碍物把球踢到球门里。足球场用大小为 ( M * M ) 的正方形网格表示,其中每个元素可以是以下几种类型:

  • 'X':小明的初始位置,球场上只有一个。
  • '0':空地,可以在上面自由行走。
  • '1':障碍物,不能通行。
  • 'B':足球,球场上只有一个。
  • 'G':球门,球场上只有一个。

小明的移动规则如下:

  1. 初始时,小明和球可能不相邻。小明需要先走到球的位置才能开始踢球。
  2. 当小明移动到球的相邻格子后,继续向球的方向移动,会将球踢到同方向相邻的格子。
  3. 如果球移动前方会碰到障碍物或边界,踢球无效,小明和球的位置保持不变。

目标是计算小明把球踢到球门里需要踢球的最少次数。如果无法踢到球门,返回 -1

输入描述

输入第一行是一个正整数 ( M )(( 5 \leq M \leq 20 ))。

接下来是一个 ( M \times M ) 的矩阵,每行包含 ( M ) 个字符,字符可以是 '0''1''B''G''X'

输出描述

返回小明把球踢到球门里需要踢球的最少次数。如果无法踢到球门,返回 -1

用例输入

输入:

5
0 0 0 0 0
0 0 0 0 G
0 0 B 0 0
X 1 0 0 0
0 0 0 0 0

输出:

3

说明:
小明把球踢到球门里最少需要踢 3 次球。

解题思路

问题分析

  1. 目标:计算小明把球踢到球门里需要踢球的最少次数。
  2. 关键点
    • 小明需要先走到球的位置才能开始踢球。
    • 踢球时,球的移动方向必须与小明的移动方向相同。
    • 如果球移动前方会碰到障碍物或边界,踢球无效。
    • 使用广度优先搜索(BFS)来寻找最短路径。

算法设计

  1. 数据结构

    • 使用二维数组 mp 存储足球场的布局。
    • 使用四维数组 dis 存储从初始状态到当前状态的最少踢球次数。
    • 使用队列 q 存储当前状态,每个状态包含小明的位置和球的位置。
  2. 初始化

    • 读取输入,找到小明、球和球门的位置。
    • 初始化 dis 数组,所有值设为 -1,表示未访问。
  3. 广度优先搜索(BFS)

    • 从初始状态开始,将小明和球的位置加入队列。
    • 每次从队列中取出一个状态,尝试向四个方向移动。
    • 如果移动到球的相邻位置,尝试踢球,更新球的位置。
    • 如果球移动到球门位置,记录踢球次数并返回。
    • 如果移动到非障碍物位置,更新小明的位置,但球的位置不变。
    • 将新状态加入队列,继续搜索。
  4. 结果计算

    • 如果找到球门,返回最少踢球次数。
    • 如果队列为空且未找到球门,返回 -1

代码实现

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<vector>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<set>
#include<list>
#include<sstream>
#include<bitset>
#include<stack>
#include<climits>
#include<iomanip>
#include<cstdint>
using namespace std;
int n;
int fe, fd;// 起始位置
int se, sd;// 足球位置
int ee, ed;// 结束位置
int dx[] = { 0, 0, 1, -1 };
int dy[] = { 1, -1, 0, 0 };
char mp[30][30];
int dis[50][50][50][50];// 人物位置和球的位置
int bfs() {
    queue<vector<int>> q;
    q.push({ fe,fd,se,sd });
    dis[fe][fd][se][sd] = 0;
    int res = -1;
    while (!q.empty()) {
        // 当前人物状态
        int cx = q.front()[0];
        int cy = q.front()[1];
        // 当前足球状态
        int fx = q.front()[2];
        int fy = q.front()[3];
        q.pop();
        for (int i = 0; i < 4; i++) {
            int nx = cx + dx[i], ny = cy + dy[i]; // 计算新的位置
            if (nx < 0 || nx >= n || ny < 0 || ny >= n || mp[nx][ny] == '1') continue;
            if (nx == fx && ny == fy) {
                // 尝试踢球
                int nfx = fx + dx[i], nfy = fy + dy[i]; // 计算踢球后新的球位置
                if (nfx < 0 || nfx >= n || nfy < 0 || nfy >= n || mp[nfx][nfy] == '1') continue;
                if (dis[nx][ny][nfx][nfy] == -1) {
                    dis[nx][ny][nfx][nfy] = dis[cx][cy][fx][fy] + 1; // 更新距离
                    q.push({ nx, ny, nfx, nfy }); // 将新状态入队
                    if (nfx == ee && nfy == ed) { // 如果球已经进了球门
                        if (res== -1 || res > dis[nx][ny][nfx][nfy]) {
                            res = dis[nx][ny][nfx][nfy]; // 更新最短路径
                        }
                    }
                }
            }
            else {// 球没动
                if (dis[nx][ny][fx][fy] == -1) { 
                    dis[nx][ny][fx][fy] = dis[cx][cy][fx][fy]; // 保持距离不变
                    q.push({ nx, ny, fx, fy });
                }
            }
        }
    }
    return res;
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cin >> n;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cin >> mp[i][j];
            if (mp[i][j] == 'B') {
                se = i, sd = j;
            }
            if (mp[i][j] == 'G') {
                ee = i, ed = j;
            }
            if (mp[i][j] == 'X') {
                fe = i, fd = j;
            }
        }
    }
    memset(dis, -1, sizeof(dis));
    cout<<bfs();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值