时间限制: 1000 ms 内存限制: 65536 KB
提交数: 5099 通过数: 3367
【题目描述】
有一个方格矩阵,矩阵边界在无穷远处。我们做如下假设:
a、每走一步时,只能从当前方格移动一格,走到某个相邻的方格上;
b、走过的格子立即塌陷无法再走第二次;
c、只能向北、东、西三个方向走;
请问:如果允许在方格矩阵上走n步,共有多少种不同的方案。2种走法只要有一步不一样,即被认为是不同的方案。
【输入】
允许在方格上行走的步数n(n≤20)。
【输出】
计算出的方案数量。
【输入样例】
2【输出样例】
7【来源】
若用模拟很难完成。本题只需算出路径条数,不需要找出所到达的点。
失败代码
#include<iostream>
using namespace std;
int main()
{
int a[42][22];
int n;
cin>>n;
for(int i=21,j=21;i<=21+n&&j>=21-n;i++,j--)
{
a[1][i]=1;a[1][j]=1;
}
for(int i=1;i<=1+n;i++)
{
a[i][21]=1;
}
int s=0;
for(int i=2;i<1+n;i++)
for(int t=20,j=22;t>=21-(n-i+1)&&j<=21+(n-i+1);j++,t--)
{
a[i][t]=a[i-1][t]+a[i][t+1];
a[i][j]=a[i-1][j]+a[i][j-1];
}
for(int i=n,j=20,t=22;i>=2;i--,j--,t++)
{
s=s+a[i][t]+a[i][j];
}
cout<<s+3;
}
失败原因 模拟情况不全面,忽略了边界内的点;
正确代码
路径条数的增加相当于树形 ,每个点可向左向右向上发枝,但由右边的点发出来的枝不能再向右发枝(走过的格子立即坍塌,无法回去),找到每一步与之前的步的关系,递推法算出路径条数即可。
#include <iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int *a=new int [n+1];
a[1]=3;
a[0]=1;
for(int i=2;i<=n;i++)
{
a[i]=a[i-1]*2+a[i-2];
}
cout<<a[n];
delete []a;
}