1.堆
1.1堆的定义
堆是计算机科学中一类特殊的数据结构的统称,堆通常可以 被看做是一棵完全二叉树的数组对象。
1.2堆的特性:
它是完全二叉树,除了树的最后一层结点不需要是满的,其 它的每一层从左到右都是满的,如果最后一层结点不是满的, 那么要求左满右不满。
它通常用数组来实现。 具体方法就是将二叉树的结点按照层级顺序放入数组中,根结点在位置1,它的子结点在位置2和3,而子结点的子 结点则分别在位置4,5,6和7,以此类推。
如果一个结点的位置为k,则它的父结点的位置为 [k/2],而它的两个子结点的位置则分别为 2k 和 2k+1 。
这样,在不 使用指针的情况下,我们也可以通过计算数组的索引在树中上下移动:从a[k]向上一层,就令k等于k/2,向下一层就 令k等于2k或2k+1。
每个结点都大于等于它的两个子结点。这里要注意堆中仅仅规定了每个结点大于等于它的两个子结点,但这两个 子结点的顺序并没有做规定,跟我们之前学习的二叉查找树是有区别的。
1.3 堆的API设计
- insert插入方法的实现
堆是用数组完成数据元素的存储的,由于数组的底层是一串连续的内存地址,所以我们要往堆中插入数据,我们只 能往数组中从索引0处开始,依次往后存放数据,但是堆中对元素的顺序是有要求的,每一个结点的数据要大于等于它的两个子结点的数据,所以每次插入一个元素,都会使得堆中的数据顺序变乱,这个时候我们就需要通过一些 方法让刚才插入的这个数据放入到合适的位置。
所以,如果往堆中新插入元素,我们只需要不断的比较新结点a[k]和它的父结点a[k/2]的大小,然后根据结果完成
数据元素的交换,就可以完成堆的有序调整。
- delMax删除最大元素方法的实现
由堆的特性我们可以知道,索引1处的元素,也就是根结点就是最大的元素,当我们把根结点的元素删除后,需要 有一个新的根结点出现,这时我们可以暂时把堆中最后一个元素放到索引1处,充当根结点,但是它有可能不满足 堆的有序性需求,这个时候我们就需要通过一些方法,让这个新的根结点放入到合适的位置。
所以,当删除掉最大元素后,只需要将最后一个元素放到索引1处,并不断的拿着当前结点a[k]与它的子结点a[2k] 和a[2k+1]中的较大者交换位置,即可完成堆的有序调整。
1.4.1 堆的实现代码
public class Heap<T extends Comparable<T>> {
//存储堆中的元素
private T[] items;
//记录堆中元素的个数
private int N;
public Heap(int capacity) {
this.items= (T[]) new Comparable[capacity+1];
this.N=0;
}
//判断堆中索引i处的元素是否小于索引j处的元素
private boolean less(int i,int j){
return items[i].compareTo(items[j])<0;
}
//交换堆中i索引和j索引处的值
private void exch(int i,int j){
T temp = items[i];
items[i] = items[j];
items[j] = temp;
}
//往堆中插入一个元素
public void insert(T t){
items[++N]=t;
swim(N);
}
//使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
private void swim(int k){
//通过循环,不断的比较当前结点的值和其父结点的值,如果发现父结点的值比当前结点的值小,则交换位置
while(k>1){
//比较当前结点和其父结点
if (less(k/2,k)){
exch(k/2,k);
}
k = k/2;
}
}
//删除堆中最大的元素,并返回这个最大元素
public T delMax(){
T max = items[1];
//交换索引1处的元素和最大索引处的元素,让完全二叉树中最右侧的元素变为临时根结点
exch(1,N);
//最大索引处的元素删除掉
items[N]=null;
//元素个数-1
N--;
//通过下沉调整堆,让堆重新有序
sink(1);
return max;
}
//使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
private void sink(int k){
//通过循环不断的对比当前k结点和其左子结点2*k以及右子结点2k+1处中的较大值的元素大小,如果当前结点小,则需要交换位置
while(2*k<=N){
//获取当前结点的子结点中的较大结点
int max;//记录较大结点所在的索引
if (2*k+1<=N){
if (less(2*k,2*k+1)){
max=2*k+1;
}else{
max=2*k;
}
}else {
max = 2*k;
}
//比较当前结点和较大结点的值
if (!less(k,max)){
break;
}
//交换k索引处的值和max索引处的值
exch(k,max);
//变换k的值
k = max;
}
}
public static void main(String[] args) {
Heap<String> heap = new Heap<String>(20);
heap.insert("A");
heap.insert("B");
heap.insert("C");
heap.insert("D");
heap.insert("E");
heap.insert("F");
heap.insert("G");
String del;
while((del=heap.delMax())!=null){
System.out.print(del+",");
}
}
}
1.4.2堆排序
给定一个数组:
String[] arr = {“S”,“O”,“R”,“T”,“E”,“X”,“A”,“M”,“P”,“L”,“E”}
请对数组中的字符按从小到大排序。
实现步骤:
- 构造堆;
- 得到堆顶元素,这个值就是最大值;
- 交换堆顶元素和数组中的最后一个元素,此时所有元素中的最大元素已经放到合适的位置;
- 对堆进行调整,重新让除了最后一个元素的剩余元素中的最大值放到堆顶;
- 重复2~4这个步骤,直到堆中剩一个元素为止。
1.4.3堆构造过程
堆的构造,最直观的想法就是另外再创建一个和新数组数组,然后从左往右遍历原数组,每得到一个元素后,添加到新数组中,并通过上浮,对堆进行调整,最后新的数组就是一个堆。上述的方式虽然很直观,也很简单,但是我们可以用更聪明一点的办法完成它。创建一个新数组,把原数组0length-1的数据拷贝到数组的1length处,再从新数组长度的一半处开始往1索引处扫描(从右往左),然后对扫描到的每一个元素做下沉调整即可。
1.4.4 堆排序过程
public class HeapSort {
//判断heap堆中索引i处的元素是否小于索引j处的元素
private static boolean less(Comparable[] heap, int i, int j) {
return heap[i].compareTo(heap[j])<0;
}
//交换heap堆中i索引和j索引处的值
private static void exch(Comparable[] heap, int i, int j) {
Comparable tmp = heap[i];
heap[i] = heap[j];
heap[j] = tmp;
}
//根据原数组source,构造出堆heap
private static void createHeap(Comparable[] source, Comparable[] heap) {
//把source中的元素拷贝到heap中,heap中的元素就形成一个无序的堆
System.arraycopy(source,0,heap,1,source.length);
//对堆中的元素做下沉调整(从长度的一半处开始,往索引1处扫描)
for (int i = (heap.length)/2;i>0;i--){
sink(heap,i,heap.length-1);
}
}
//对source数组中的数据从小到大排序
public static void sort(Comparable[] source) {
//构建堆
Comparable[] heap = new Comparable[source.length+1];
createHeap(source,heap);
//定义一个变量,记录未排序的元素中最大的索引
int N = heap.length-1;
//通过循环,交换1索引处的元素和排序的元素中最大的索引处的元素
while(N!=1){
//交换元素
exch(heap,1,N);
//排序交换后最大元素所在的索引,让它不要参与堆的下沉调整
N--;
//需要对索引1处的元素进行对的下沉调整
sink(heap,1, N);
}
//把heap中的数据复制到原数组source中
System.arraycopy(heap,1,source,0,source.length);
}
//在heap堆中,对target处的元素做下沉,范围是0~range
private static void sink(Comparable[] heap, int target, int range){
while(2*target<=range){
//1.找出当前结点的较大的子结点
int max;
if (2*target+1<=range){
if (less(heap,2*target,2*target+1)){
max = 2*target+1;
}else{
max = 2*target;
}
}else{
max = 2*target;
}
//2.比较当前结点的值和较大子结点的值
if (!less(heap,target,max)){
break;
}
exch(heap,target,max);
target = max;
}
}
}