自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 TOWARDS FASTER AND STABILIZED GAN TRAININGFOR HIGH-FIDELITY FEW-SHOT IMAGE SYNTHESIS

1.研究背景和任务定义 在分辨率高的图像上训练生成对抗网络(GAN)通常需要大规模的gpu集群和大量的训练图像。本文研究了最小计算成本的GAN图像合成任务。 2.展示实验效果 我们提出了一个轻量级的GAN结构,在1024 × 1024分辨率上获得了卓越的质量。该模型在单个RTX-2080 GPU上只需几个小时的训练就可以从头开始收敛,并且具有一致的性能,即使少于100个训练样本。在数据和计算预算有限的情况下,我们展示了与最先进的StyleGAN2相比,我们的模型的卓越性能。 3.展示自己的创新点 两种技术设

2022-06-30 21:00:45 1069

原创 把基于全连接层MLP的简单神经网络模型改为基于CNN卷积神经网络的模型

在上一次的博客中已经写了如何搭建一个基于MLP的神经网络模型,这次讲如何把基于MLP的神经网络模型改为基于简单的CNN的神经网络模型。上次博客链接:第一步:导包,和上个模型的操作大致一样# 导包import torchimport torch.nn as nnimport torchvision.datasets as datasetsimport torchvision.transforms as transformsfrom torch.utils.data import Dat

2022-05-26 17:29:57 601

原创 简单的基于MLP全连接层的神经网络模型搭建

下面先来搭建一个最简单的神经网络,灵感及模板来源于bilibili的一位up主Lavita哥,相关视频链接如下:Pytorch进阶教程(1)---手把手实现MNIST图片的分类_哔哩哔哩_bilibili第一步搭建导包:##################################################### MNIST 分类 ####################################

2022-05-26 16:50:42 1729 1

原创 RuntimeError: set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

报错信息如下:RuntimeError Traceback (most recent call last)~\AppData\Local\Temp/ipykernel_19156/279535578.py in <module> 59 60 #2、用噪声生成一张假图片---> 61 noise.data.resize_(data.size()[0], input_dim

2022-04-05 11:20:40 2776

原创 ValueError: Using a target size (torch.Size([64])) that is different to the input size (torch.Size([

ValueError Traceback (most recent call last)~\AppData\Local\Temp/ipykernel_19156/279535578.py in <module> 54 #计算损失函数 55 label.data.fill_(1)---> 56 error_real=criterion(output, lab.

2022-04-05 11:12:15 16503

原创 can‘t convert cuda:0 device type tensor to numpy.Use Tensor.cpu() to copy the tensor to host memory

源代码:# 训练曲线result1 = [100 - i['train'] for i in statistics]result2 = [100 - i['valid'] for i in statistics]plt.figure(figsize = (10, 7))plt.plot(result1, label = 'Training')plt.plot(result2, label = 'Validation')plt.xlabel('Step')plt.ylabel('Error

2022-04-05 10:26:20 5800 2

原创 TypeError: can‘t convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to

报错提示图中的86行出现错误,通过查阅找资料更改如下,在.numpy之前加上.cpu()再次点击运行,即可正常运行了。

2022-04-05 09:15:01 3273

原创 cannot resize variables that require grad

我在网上查了很多的资料,都没有解决,网上一般提到把resize换成reshape,但是我更换了之后发现还是报错。 网上也有相关报错的解释,比如http://pytorch 0.4 改动: cannot resize variables that require grad但没有给出解决方法,因为报错提示不能对可变梯度求resize,所以我就把variable的requires_grad给改为false,或者直接删点默认为false最后就能正常跑代码了。...

2022-03-31 07:46:15 3514 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除