实时目标检测YOLO系列之YOLOv2

论文地址:https://arxiv.org/abs/1612.08242

Abstract:

        在这篇文章中,作者首先在YOLOv1的基础上提出了改进的YOLOv2,然后提出了一种检测与分类联合训练方法,使用这种联合训练方法在COCO检测数据集和ImageNet分类数据集上训练出了YOLO9000模型,其可以检测超过9000多类物体。所以,这篇文章其实包含两个模型:YOLOv2和YOLO9000,不过后者是在前者基础上提出的,两者模型主体结构是一致的。YOLO9000是通过联合优化检测和分类,实时检测9000多个目标类别的框架。通过使用WordTree来结合不同来源的数据,并使用联合优化技术在ImageNet和COCO上同时进行培训。对ImageNet的WordTree表示为图像分类提供了更丰富,更详细的输出空间。使用分层分类的数据集组合在分类和分割域中将非常有用。

1. 基本介绍

(1)介绍

相对于YOLOv1,YOLOv2主要有两个大方面的改进:

  • 使用一系列的方法对YOLO进行了改进,在保持原有速度的同时提升精度得到YOLOv2。
  • 提出了一种目标分类与检测的联合训练方法,同时在COCO和ImageNet数据集中进行训练得到YOLO9000,实现9000多种物体的实时检测。

(2)原理

       YOLOv1 虽然检测速度快,但在定位方面不够准确,并且召回率较低。为了提升定位准确度,改善召回率,YOLOv2 在 YOLOv1 的基础上提出了几种改进策略。

                                   

(3)成就

                   

       我们可以从上图中看出yolov2不仅满足实时性要求,相对于yolov1,在mAP值有巨大的提升,较之于Faster R-CNN和SSD也有更高的mAP值。

(4)创新点

YOLOv2采用了若干技巧对YOLOv1的速度和精度进行了提升。其中比较有趣的有以下几点:

  1. 使用聚类产生的锚点代替Faster R-CNN和SSD手工设计的锚点;
  2. 在高分辨率图像上进行迁移学习,提升网络对高分辨图像的响应能力;
  3. 训练过程图像的尺寸不再固定,提升网络对不同训练数据的泛化能力。
  4. 训练了一个特征提取器:Darknet-19。

2. 网络结构及trick分析

(1)检测流程

                                                            

        整个网络结构全部由卷积层和最大池化层构成,只有池化层是缩放了的,每个池化层步长都是 2 ,一共 5 个池化层,所以最后会缩小 2 的5 次方,也就是 32 倍。输出实际上和 yolov1 是一样的,是一个特征向量,只不过它是卷积出来的,没有经历全连接层。

        13*13 代表的是最后那层 feature map 是 13*13 的维度,而每个点预测 5 种 bbox,每个 bbox 是 80 个类别的概率 + 4 个坐标 (x,y,w,h) + confidence 。与 YOLOv1 相同的是把noobject概率单独拿出来,其实反过来想就相当于是背景的概率了。所以80个类别那每个bbox就预测85个值,每个点 5 个bbox就是5 * 85=425。因为没有了全连接层了,所以其实 YOLOv2 理论上是可以支持任意大小的图的,也就是说最后那层feature map 不一定限制成立 13*13,具体大小也就是图宽高分别除以 32 以后的值。

(2)backbone

     Darknet19如下图所示,在做目标检测时,最后红色框的最后的卷积层使用3×3的卷积层替换,然后再使用1×1的卷积将7×7×1024的输出转换成7×7×125。

                                                          

       Darknet-19(具有19个卷积层和5个maxpooling层。仅需要55.8亿次操作来处理图像,但在ImageNet上达到72.9%的top-1精度和91.2%的top-5精度),与VGG模型类似,但是在每个合并步骤之后,主要使用3×3过滤器使得通道数量加倍。遵循NIN的工作之后,使用全局平均池进行预测,并使用1×1过滤器压缩3×

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值