1、机器学习
前面博主发布了数据分析类模型(基于sql模式建立的模型)和数据挖掘类模型相关的场景示例,数据挖掘模型的建立充分利用到机器学习进行分类/预测,如预测模型和数据分析之间有什么不同?
2、深度学习
深度学习属于机器学习的一个子集,一般指神经网络,和之前咱们用到的算法(广义线性、决策树、随机森林等)有所不同,具体表现在:
(1)数据依赖性,和机器学习相比,想要提升预测的准确性,深度学习需要依赖更大规模的数据
(2)硬件依赖性,和机器学习相比,深度学习很多场景需要依赖gpu进行运算
(3)逻辑的解释性,深度学习只提供结果,但无法解释。机器学习算法为我们提供了一套清晰的规则,解释它背后的逻辑比较容易
总结:博主认为,很多场景机器学习和深度学习都可以得到较准确的结果,但是如果特征数据很少的情况下,机器学习更能得到接近的效果;在识别场景较复杂的情况下,深度学习更能得到理想的效果,比如无人驾驶汽车、病理分析。
3、通过深度学习进行图片分类
示例基于数合建模(数据建模及可视化工具)完成
基于数据建模及相关生态工具平台,推动政企数字化建设