MIT App Inventor安卓图形化开发入门

一、准备工作:
1、软件:AppInventor2019个人版(离线)
链接(提取码:s41j ):https://pan.baidu.com/s/17TpkkCJGZhB6w0J5VNkI0w

2、查IP:【windows+R】→【ipconfig】

二、具体步骤:
1、打开【启动AppInventor】
在这里插入图片描述
2、打开浏览器,输入【IP:端口号】
注:这里的端口号为8888;打不开时可以换个浏览器试试。
在这里插入图片描述

3、创建或导入项目
在这里插入图片描述
4、编辑
分为图形界面设计和逻辑代码设计,按左上角切换。
在这里插入图片描述

5、生成二维码或下载apk
注:电脑和手机要在同一网段。
在这里插入图片描述
结束。

### MIT App Inventor 图像处理教程 #### 使用内置组件进行基本图像显示 MIT App Inventor 提供了多种用于处理和展示图片的组件。`Image` 组件可以用来加载并显示静态图片文件,这些文件可以从设备存储中选取或是网络资源链接获取[^1]。 对于更复杂的交互需求,则有 `Canvas` 和 `Sprite` 这样的绘图类组件可供选用。前者允许开发者定义画布大小,并在其上绘制线条、形状以及粘贴其他小部件;后者则是可以在 Canvas 上移动的小对象,适用于创建动画效果或游戏元素[^2]。 ```blockly when Screen1.Initialize do set Image1.Picture to "file:///sdcard/Pictures/example.jpg" end ``` #### 利用扩展库增强功能 为了实现更加专业的图像编辑能力,比如滤镜应用、裁剪变形等功能,可以通过引入第三方AI模块来补充原生组件不足之处。例如,“TinyDB”可用于保存修改后的照片数据,“WebViewer”能调用外部网站上的在线相册服务接口等[^3]。 不过值得注意的是,由于安全性和权限管理方面的原因,在实际部署前务必仔细阅读官方文档关于如何正确配置相应设置部分的内容说明[^4]。 #### 实现简单的图像识别案例 借助于 AI Builder 或 ML Kit 插件,还可以轻松构建具备简单视觉理解能力的应用程序。下面是一个利用 TensorFlow Lite 模型预测上传图片类别(如动物种类分类)的例子: ```blockly // 假设已安装好所需机器学习模型 private procedure PredictImageCategory(imagePath as text) returns list of predictions call mlkit.ImageLabeler.LabelImage with imagePath then function(result){ log result.getLabels() return result.getLabels() // 返回标签列表 } end ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

念芯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值