计算机视觉
文章平均质量分 68
Doris_mR
这个作者很懒,什么都没留下…
展开
-
Python OpenCV——JupyterLab中使用Anaconda配置的虚拟环境
JupyterLab中使用Anaconda配置的虚拟环境1. Anaconda配置虚拟环境1. Anaconda配置虚拟环境操作这一步骤的前提是已经创建好虚拟环境,在已有虚拟环境的基础上配置JupyterLab可以使用的虚拟环境。以管理员方式打开Anaconda Prompt输入下面的语句。在这里插入图片描述conda activate tensor13conda install ipykernel...原创 2021-09-23 14:45:50 · 704 阅读 · 0 评论 -
计算机视觉——基于Bag Of Word的图像检索
基于BOW的图像检索1. Bag-of-words简介2. Bag-of-words原理及流程2.1. 特征提取2.2. 学习"视觉词典"2.3. 对图像特征集进行量化2.4. 将图像转换为视觉单词的频率直方图2.5. 构造特征到图像的倒排表2.6. 根据索引结果进行直方图匹配3. 实验流程及代码3.1 数据集准备3.2 SIFT特征提取3.3 学习“视觉词典(visual vocabulary)”3.4 对数据集图像的特征集进行量化3.5 建立图像索引进行图像检索4. 实验结果及分析4.1 SIFT特征提原创 2020-05-24 22:15:30 · 2161 阅读 · 1 评论 -
计算机视觉——计算视差图
计算视差图1. 立体视差2. 极线矫正3. 归一化互相关(NCC)4 . 计算视差图的步骤5. 实验过程5.1 实验代码5.2 实验结果及分析5.2.1 视差图计算结果5.2.2 不同窗口值(wid)的视差图6. 实验中遇到的问题及解决1. 立体视差立体视差 ,亦称立体视像、立体知觉。基于双眼视差所 获得的深度知觉。立体视差的测量包括三个步骤:(1)必须从一幅图像中选出位于场景中一个表面上...原创 2020-04-26 17:19:34 · 13652 阅读 · 2 评论 -
计算机视觉——多视图几何
多视图几何1.前言1.1 多视图几何概念2. 基本原理2.1 对极几何2.2 基础矩阵2.2.1 基础矩阵推导2.2.2 求解基础矩阵3. 实验过程3.1 实验数据准备3.2 实验代码3.3 实验结果及分析4. 实验中遇到的问题1.前言1.1 多视图几何概念多视图几何是利用在不同视点所拍摄图像间的关系,来研究照相机之间或者特征之间关系的一门科学。多视图几何(Multiple View ...原创 2020-04-21 23:41:10 · 6411 阅读 · 0 评论 -
计算机视觉——相机参数标定
相机参数标定1. 前言2. 基本原理2.1 相机标定2.2 相机模型2.2 线性回归标定参数2.3 非线性优化标定参数2.4 张正友相机标定原理2.4.1 基本概念2.4.2 单应性矩阵2.4.3 内部参数2.4.4 闭合解2.4.3 极大似然估计2.4.5 最小化重投影误差3. 张正友相机标定基本流程4. 实验准备及数据5. 实验代码6. 实验结果及分析6.1 角点检测结果及分析6.2 内部参数...原创 2020-04-07 15:11:27 · 2557 阅读 · 0 评论 -
计算机视觉——全景图像拼接
图像拼接1.图像拼接1.1 基本介绍1.2 基本原理1.2.1 APAP算法1.2.2 Seam Finding1.2.2 图像融合(multi-band bleing)1.3 基本流程2.实验过程2.1 实验代码2.2 固定点位拍摄实现图像拼接2.2.1 实验结果2.2.1.1 室外场景2.2.1.2 室内场景2.2.2 实验分析2.3 视差变化大的场景实现图像拼接2.3.1 实验结果2.3.1...原创 2020-03-24 14:45:24 · 18950 阅读 · 25 评论 -
计算机视觉——SIFT特征提取与检索+匹配地理标记图像+RANSAC算法
SIFT特征提取与检索1. SIFT算法1.1 基本概念1.2 基本原理1.3 SIFT算法实现步骤2. 实验过程2.1 构造小型数据集2.2 SIFT特征提取2.3 SIFT特征匹配2.4 SIFT特征检索并排序3. 实验总结与分析4. 实验中遇到的问题1. SIFT算法1.1 基本概念尺度不变特征转换(Scale-invariant feature transform或SIFT) 是一...原创 2020-03-08 09:49:33 · 5405 阅读 · 3 评论 -
计算机视觉——HARRIS角点检测
HARRIS角点检测1. 基本思想2. 基本原理2.1 HARRIS数学表达式2.2 角点响应函数2.3 角点计算流程3. 实验过程3.1 数据准备3.2 代码实现4. 实验结果分析4.1 数据一实验结果对比及分析4.2 数据二的实验结果对比4.3 数据三的实验结果对比5. 实验结果分析总结1. 基本思想Harris角点检测算子是于1988年由CHris Harris & Mike S...原创 2020-02-25 15:58:36 · 1053 阅读 · 0 评论 -
计算机视觉——Python图像处理基础
图像处理基础1. PIL-Python图像库1.1 图片的格式转换1.2 创建缩略图1.3拷贝并粘贴区域1.4 调整尺寸及旋转2. Matplotlib库2.1 画图、描点和线2.2 图像轮廓和直方图2.3交互注释3. NumPy库3.1 图像数组表示3.2 灰度变换3.3 直方图均衡化4. SciPy模块4.1 图像模糊4.2 图像差分4.2.1 图像差分4.2.1 高斯差分4.3 形态学-物...原创 2020-02-23 12:52:35 · 1741 阅读 · 1 评论