黑马点评之一人一单锁和事务的处理问题

文章讨论了在秒杀业务中如何防止一个用户获取多张优惠券的问题。通过增加逻辑判断,如检查时间、库存以及用户是否已下单,初步实现了限制。然而,在高并发情况下,使用悲观锁和乐观锁控制一人一单仍存在并发问题。在单机环境下,通过用户ID作为锁对象并使用`synchronized`关键字进行控制,但在集群环境中,需要转向分布式锁来解决跨JVM的并发问题。文章还提到了事务管理和AOP在处理事务中的作用,以及在集群环境下分布式锁的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目场景:

修改秒杀业务,要求同一个优惠券,一个用户只能下一单


问题描述

优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单

具体操作逻辑如下:比如时间是否充足,如果时间充足,则进一步判断库存是否足够,然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单
在这里插入图片描述

初步代码:增加一人一单逻辑

@Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    // 2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀尚未开始!");
    }
    // 3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀已经结束!");
    }
    // 4.判断库存是否充足
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    // 5.一人一单逻辑
    // 5.1.用户id
    Long userId = UserHolder.getUser().getId();
    int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
    // 5.2.判断是否存在
    if (count > 0) {
        // 用户已经购买过了
        return Result.fail("用户已经购买过一次!");
    }

    //6,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //7.创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    // 7.1.订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);

    voucherOrder.setUserId(userId);
    // 7.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);

}

出现问题:上述代码通过int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();去数据库根据用户id和优惠券id查询订单里面是否已经有了用户抢购的唯一记录,若count ==0代表是用户初次下单,则去执行下面的优惠券扣减动作,反之则给用户返回只能下单一次的错误信息。

但是在高并发的情况下,就会导致多个线程进入sql语句判断count ==0的情况,导致一个用户可以对优惠券的多次扣减。

存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单(count ==0的情况),所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作

注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁

@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {

	Long userId = UserHolder.getUser().getId();
         // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            return Result.fail("用户已经购买过一次!");
        }

        // 6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1") // set stock = stock - 1
                .eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 扣减失败
            return Result.fail("库存不足!");
        }

        // 7.创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        // 7.1.订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 7.2.用户id
        voucherOrder.setUserId(userId);
        // 7.3.代金券id
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);

        // 7.返回订单id
        return Result.ok(orderId);
}

出现问题: 因为需要实现的一人一单,只是规定了一个用户只能下一单,但是不妨碍其他的用户去下单,这样的话直接在方法体上加synchronized会导致当前用户在下单,别的用户也要在外面等待,效率就会很差。

解决方案:

这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度 是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,以下这段代码需要修改为:
intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法
``


@Transactional
public  Result createVoucherOrder(Long voucherId) {
	Long userId = UserHolder.getUser().getId();
	synchronized(userId.toString().intern()){
         // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            return Result.fail("用户已经购买过一次!");
        }
        、、、、、、、、、、、、、

出现问题: 以上代码还是存在问题,问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:
seckillVoucher 方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度

@Override
//    @Transactional   数据库操作放在  封装方法体里面  方法体加了事务锁  这里不需要加事务了
    public Result seckillVoucher(Long voucherId) {
        //1.查询优惠券信息
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        //2.根据优惠券的开始时间判断秒杀是否开始
        boolean isBegin = voucher.getBeginTime().isAfter(LocalDateTime.now());
        if (isBegin) {
            // 尚未开始
            return Result.fail("秒杀尚未开始");
        }
        // 3.判断秒杀是否已经结束
        boolean isBefore = voucher.getEndTime().isBefore(LocalDateTime.now());
        if (isBefore) {
            // 秒杀已经结束
            return Result.fail("秒杀已经结束");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }

        Long userId = UserHolder.getUser().getId();
        synchronized (userId.toString().intern()) {
            return this.createVoucherOrder(voucherId);
         
        
        }//调用封装  一人一单(悲观锁)  并且  不超卖(乐观锁)
    }

提示:但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务
//若将事务注解加此方法上:
// 事务是采用的mapper代理方式实现;
// 调用此方法时 是采用this.方法()是非代理对象 是没有事务功能的
//因此需要在调用处拿到这个方法的代理对象 才能使事务生效

 Long userId = UserHolder.getUser().getId();
        synchronized (userId.toString().intern()) {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        }//调用封装  一人一单(悲观锁)  并且  不超卖(乐观锁)

这里需要引入依赖包

   <dependency>
            <groupId>org.aspectj</groupId>
            <artifactId>aspectjweaver</artifactId>
        </dependency>
    </dependencies>

并且在启动类上加上注解

 @EnableAspectJAutoProxy(exposeProxy = true)

提示:exposeProxy = true 是该注解的一个可选属性,用于决定是否将代理对象暴露给 AopContext,以便在切面内部访问当前代理对象。默认情况下,exposeProxy 的值为 false,即不暴露当前代理。如果将 exposeProxy 设置为 true,可以通过 AopContext.currentProxy() 方法在切面内部获取当前代理对象。

集群环境下的并发问题:

通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。
1、我们将服务启动两份,端口分别为8081和8082:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NGvo1mns-1688625551664)(.\Redis实战篇.assets\1653373887844.png)]

2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-s7gBlaTK-1688625551665)(.\Redis实战篇.assets\1653373908620.png)]
有关锁失效原因分析

由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。

在这里插入图片描述
分布式锁参考链接:

<think>好的,我现在需要处理用户关于“黑马点评项目中分布式事务处理方案或问题”的查询。首先,我要回顾用户提供的参考资料,这些资料主要涉及分布式的实现,特别是基于Redis的setnx命令以及Redisson的应用。然而,用户的问题转向了分布式事务,这是个更广泛的话题,涉及多个服务或数据库之间的事务致性。 首先,我需要确认黑马点评项目是否在分布式事务方面有具体的实现方案。根据提供的引用内容,项目主要讨论了分布式,用于解决并发控制问题,比如秒杀场景中的资源争用。但分布式事务通常处理的是跨服务或跨数据库事务,比如订库存的同步更新。这可能意味着项目中没有直接使用传统的分布式事务方案,而是通过其他方式保证最终致性。 接下来,我需要分析可能的处理方式。在分布式系统中,常见的解决方案包括TCC(Try-Confirm-Cancel)、本地消息表、基于消息队列的最终致性等。黑马点评作为个实战项目,可能采用较为简有效的方法,比如结合RedisMQ来实现异步处理,或者利用Redisson的特性来简化部分事务管理。 另外,用户提到的引用中,Redisson被用来解决分布式问题,比如的自动续期可重入性。但分布式事务问题更多涉及事务的原子性致性,可能需要不同的策略。例如,在订创建时扣减库存,可能需要将这两个操作放在事务中,但在分布式环境下,这通常难以实现,因此需要采用补偿机制或者异步确认。 我还需要考虑项目中的具体场景。比如,用户下后,可能需要同时更新订数据库库存数据库。如果这两个数据库是分开的,传统的事务无法跨库,因此需要引入分布式事务解决方案。可能的实现方式包括: 1. **本地消息表**:在业务数据库中维护个消息表,记录事务状态,通过定时任务补偿未完成的事务。 2. **消息队列**:使用MQ(如RabbitMQ或Kafka)发送事务消息,确保消息被可靠地处理,实现最终致性。 3. **TCC模式**:通过Try阶段预留资源,Confirm阶段确认操作,Cancel阶段回滚,适用于需要高致性的场景。 但根据引用内容,项目可能更倾向于使用RedisRedisson来处理并发,而分布式事务可能通过异步补偿机制实现。例如,下时先预占库存(使用分布式保证原子性),然后异步生成订,若订失败则释放库存。这种方式牺牲了强致性,但提高了系统的可用性。 需要进步考虑的问题包括:如何处理网络分区或服务故障?是否引入了重试机制或工干预?这些都是在设计分布式事务时需要考虑的。 总结来说,虽然参考资料主要讨论分布式,但分布式事务处理可能结合了Redis的机制消息队列的异步处理,保证最终致性。需要将这些点组织成清晰的回答,并生成相关问题,帮助用户深入理解。</think>### 黑马点评中的分布式事务处理方案与问题分析 在分布式系统中,黑马点评项目主要使用 **分布式** 解决并发资源竞争问题(如秒杀场景),但严格意义上的分布式事务(跨服务/跨数据库事务致性)并未直接涉及。以下是其相关实现思路与潜在问题的分析: --- #### 1. **分布式事务的间接实现思路** 项目通过 **补偿机制** **最终致性** 替代传统分布式事务方案: - **预占资源+异步处理**: 例如用户下时,先用分布式预占库存(保证原子性),异步生成订。若订失败,通过定时任务释放库存[^3]。 - **消息队列解耦**: 使用消息队列(如RabbitMQ)异步通知服务间状态变更,例如库存扣减成功后触发订创建,失败则回滚[^1]。 --- #### 2. **典型问题与解决方案** | 问题场景 | 解决方案 | |--------------------------|--------------------------------------------------------------------------| | **网络抖动导致操作超时** | 引入重试机制,并通过唯业务ID保证幂等性[^2] | | **服务宕机导致状态不致** | 记录操作日志,结合定时任务扫描补偿(如释放未支付订的库存) | | **跨服务调用失败** | 使用本地消息表记录事务状态,确保最终致性[^1] | --- #### 3. **关键技术工具** - **Redis分布式**: 通过`setnx`或Redisson实现资源预占,防止超卖(如`RedissonLock`支持自动续期可重入)[^3]。 - **消息队列**: 解耦服务间调用,确保异步操作可靠传递(如订创建后发送MQ消息通知库存服务)。 - **本地事务+日志追踪**: 在个服务内保证数据库操作原子性,通过日志追踪跨服务操作状态。 --- #### 4. **局限性分析** - **弱致性风险**: 异步处理可能导致短暂的数据不致(如用户看到库存减少但订未生成)。 - **补偿逻辑复杂度高**: 需设计完备的异常处理流程(如重试、报警、工干预)。 - **性能瓶颈**: 高频补偿任务可能增加系统负载,需合理设置扫描间隔。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值