优化模型验证关键代码25:样本均值近似技术处理两阶段随机旅行商问题及Gurobipy代码验证

本文探讨两阶段随机旅行商问题,利用样本均值近似技术处理不确定权重,并通过Gurobipy验证模型。文章介绍了建模细节、决策变量和约束条件,展示验证代码及其结果,分析了路径重复性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大多数数学规划模型都会考虑到研究问题中存在的不确定性,针对这些不确定性,两种常用的处理方法是鲁棒优化和随机规划。这篇论文我们关注后者,也就是两阶段随机旅行商问题;利用套期保值算法计算不同规模TSP的可行解,同时比较了样本均值近似技术的解的情况,并计算了该问题的统计下界和上界。

为此,我们首先采用了Miller提供的紧多项式模型进行两阶段随机旅行商问题建模。对应的问题描述如下:令无向完全图 G = ( V , E D ∪ E S ) G=(V,E_{D}\cup E_{S})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

运筹码仓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值