POJ1328Radar Installation/NC210879younik去吃午饭啦

本文介绍了一种将雷达安装问题转化为线段交集问题的贪心算法思路,通过选取覆盖范围最大的雷达安装位置来减少所需雷达数量,实现最优解。

思路

求哪里安装雷达我们可以变为线段交集问题,然后我们考虑怎么样贪心是最优的。

如图,第一个安装雷达的范围我们是必须选的,此时的右端点坐标为maxxmaxxmaxx所有左端点小于这个的我们都可以直接跳过,因为他们有交集。

然后当到达左端点大于他的时候我们需要再贪一个,然后同上,一直更新。

#include <bits/stdc++.h>
#define endl '\n'
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(case, x) cout << case << "  : " << x << endl
#define open freopen("ii.txt", "r", stdin)
#define close freopen("oo.txt", "w", stdout)
#define IO                       \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0)
#define pb push_back
using namespace std;
//#define int long long
#define lson rt << 1
#define rson rt << 1 | 1
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<long long, long long> PII;
const int maxn = 2e5 + 105;

struct node{
    double l,r;
    bool operator<(const node x)const{
        return l<x.l;
    }
}node[1010];

int main(){
    int n,d;
    while(~scanf("%d%d",&n,&d)&&n){
        bool flag=0;
        for(int i=1;i<=n;++i){
            double x,y;
            scanf("%lf%lf",&x,&y);
            if(fabs(y)>d)flag=1;
            node[i].l=x-sqrt(d*d-y*y);
            node[i].r=x+sqrt(d*d-y*y);
        }
        if(flag){
            printf("-1\n");
            continue;
        }
        sort(node+1,node+1+n);
        int ans=1;
        double maxx=node[1].r;

        for(int i=2;i<=n;++i){
            if(node[i].l-maxx<1e-7)continue;//node[i].l<=maxx
            else ++ans,maxx=max(node[i].r,maxx);
        }
        printf("%d\n",ans);


    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值