知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。
一、技术特性对比与融合动因
知识图谱与大模型作为人工智能的两大核心支柱,在技术特性上形成鲜明互补:
知识图谱以三元组(头实体-关系-尾实体)构建结构化知识网络2,具备精准的事实表述能力与符号推理优势,但其动态更新成本高、文本背景理解能力弱。
大模型通过海量参数隐式存储知识,展现强大的语言生成与上下文理解能力,但存在"幻觉"、可解释性差、领域知识不足等缺陷。
两者的结合为解决以下关键问题提供了可能:
大模型的确定性知识缺失与推理不可控
知识图谱的构建维护成本与语义理解局限
多模态场景下的统一知识表达与推理需求
二、技术融合的三重路径
(一)知识图谱增强大模型
- 预训练阶段的知识注入
实体对齐技术:ERNIE3.0将知识图谱三元组转换为文本序列,通过遮盖实体或关系的预训练任务,使模型直接学习结构化知识。KALM则采用实体嵌入增强输入,同步优化token与实体预测目标。
动态损失平衡:E-BERT通过分析训练损失动态调整token与实体学习权重,提升知识吸收效率。 - 推理阶段的检索增强
RAG架构:通过检索知识图谱中的相关子图,为生成过程提供事实支撑。如ChatGPT插件系统结合知识图谱检索实现精确问答2。
路径推理增强:在医疗诊断场景,通过遍历疾病-症状-治疗方案的知识图谱路径,辅助生成循证医学建议6。 - 可解释性提升机制
知识图谱作为推理过程的"可视化白板",通过溯源实体关联路径解释决策依据。LMExplainer等工具已实现推理链与知识子图的可视化映射。
(二)大模型赋能知识图谱
-
自动化构建与补全
端到端构建:利用大模型的零样本抽取能力,Vicuna模型通过对话数据生成问答对,自动提取实体关系。ChatExtract工具实现从非结构化文本到知识三元组的直接转换。
知识蒸馏:将大模型隐式知识显式化,如通过prompt生成候选三元组,再经置信度筛选补全图谱。 -
动态更新与跨模态扩展
结合时序预测模型,基于事件演变规律预测知识图谱的时态演化。金融领域已实现市场趋势预测与知识图谱的联动更新8。
CLIP等多模态大模型支持图像实体识别,构建包含视觉特征的多模态知识图谱。
(三)协同增强的认知系统
-
联合推理框架
神经符号系统:DRAGON模型将图神经网络与Transformer结合,在知识推理任务中准确率提升23%。
强化学习机制:通过奖励函数将知识图谱约束融入生成过程,OpenAI的WebGPT已实现基于知识验证的答案优化。 -
行业应用范式
医疗诊断系统:百度文心ERNIE结合医学知识图谱,在CMeEE评测中F1值达89.2%,较基线提升15%。
智能制造:工业知识图谱与视觉大模型协同,实现设备故障的跨模态诊断,某汽车厂商应用后运维效率提升40%。
三、挑战与未来方向
知识动态对齐:需解决静态知识图谱与大模型持续学习间的版本同步问题,发展增量式对齐算法。
多模态统一表示:探索知识图谱与大模型在3D空间、视频等复杂模态的联合表征方法。
可信机制构建:建立知识溯源、伦理约束、隐私保护三位一体的可信AI框架。
计算范式革新:研究知识图谱与大模型的联合压缩技术,推动边缘计算场景落地。
当前,知识图谱与大模型的融合已从简单的技术堆叠发展为深度认知协同。这种"符号主义+连接主义"的双驱动模式,正在重塑人工智能的技术范式,为AGI的实现开辟新路径。随着千帆、LangChain等开发平台的成熟,两者的协同效应必将催生更多颠覆性应用。
V:BJZLFF