学归并排序和逆序对,这篇文章就够了!!!归并排序和逆序对超详细整理!

1.归并排序

(1).介绍
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(DivideandConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序的时间复杂度是O(nlogn). 速度快,同时归并排序是稳定的排序,即相等的元素的顺序不会改变,如输人记录1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的1(1) 2(3) 2(4) 3(2) 5(5)中的2和2是按输人的顺序。这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输人的顺序排列时很重要,这也是它比快速排序优势的地方。
(2).实现
2-路归并排序的原理是,将序列两两分组,将序列归并为n/2个组,组内单独排序;然后将这些组再两两归并,生成n/4个组,组内再单独排序;以此类推,直到只剩下一个组为止。
下面来看一一个例子,要将序列{66, 12, 33, 57, 64, 27, 18}进行2-路归并排序。

①第一趟。两两分组,得到四组: {66, 12}、 {33,57}、 {64,27}、 {18}, 组内单独排序,得到新序列{12, 66}, {33, 57}, {27, 64}, {18}}.

②第二趟。将四个组继续两两分组,得到两组: {12, 66, 33,57}、{27, 64, 18},组内单独排序,得到新序列{{12, 33, 57, 66}, {18, 27, 64}}.

③第三趟。将两个组继续两两分组,得到一组: {12, 33, 57, 66, 18, 27, 64},组内单独排序,得到新序列{12, 18, 27, 33, 57, 64, 66}。算法结束。
在这里插入图片描述
(3).代码

//归并排序模板
const int maxn = 1e5 + 10;
int a[maxn],b[maxn];
void msort(int l, int r)
{
	if (l == r) return;   //如果只有一个数字则返回,无需排序
	int mid = (l + r) / 2;
	msort(l, mid);       //分解左序列
	msort(mid + 1, r);   //分解右序列
	int i = l, j = mid + 1, k = l;
	while (i <= mid && j <= r)
	{
		if (a[i] <=a[j])
		{
			b[k] = a[i]; k++; i++;
		}
		else
		{
			b[k] = a[j]; k++; j++;
		}
	}
	while (i <= mid)   //复制左边子序列剩余
	{
		b[k] = a[i]; k++; i++;
	}
	while (j <= r)     //复制右边子序列剩余
	{
		b[k] = a[j]; k++; j++;
	}
	for (int i = l; i <= r; i++)
	{
		a[i] = b[i];
	}
}

简化版

const int maxn = 1e5 + 10;
int q[maxn], tmp[maxn];
void merge_sort(int q[], int l, int r)
{
	if (l >= r)  return; //如果只有一个数字或没有数字,则无需排序
	int mid = (l + r ) /2;
	merge_sort(q, l, mid);       //分解左序列
	merge_sort(q, mid + 1, r); //分解右序列
	int k = l, i = l, j = mid + 1;
	while (i <= mid && j <= r)   //合并
	{
		if (q[i] <= q[j]) tmp[k++] = q[i++];
		else tmp[k++] = q[j++];
	}
	while (i <= mid) tmp[k++] = q[i++];   //复制左边子序列剩余
	while (j <= r) tmp[k++] = q[j++];    //复制右边子序列剩余
	for (int i = l; i <= r; i++) q[i] = tmp[i];
}

2.逆序对

(1).介绍
上述提到归并排序是稳定的排序,相等的元索的顺序不会改变,进而用其可以解决逆序对的问题。首先我们了解一下什么是逆序对。

逆序对:设 A为一个有n个数字的有序集(n>1),其中所有数字各不相同。如果存在正整数i,j使得1≤i<j≤n而且A[i]> A[j].则<A[i],A[j]>这个有序对称为A的一个逆序对,也称作逆序数。

例如,数组(3,1,4,5,2)的逆序对有(3,1),(3,2),(4,2),(5,2),共4个。

所谓逆序对的问题,即对给定的数组序列,求其逆序对的数量。

从逆序对定义上分析,逆序对就是数列中任意两个数满足大的在前,小的在后的组合。如果将这些逆序对都调整成顺序(小的在前,大的在后),那么整个数列就变得有序,即排序。因面,容易想到冒泡排序的机制正好是利用消除逆序来实现排序的,也就是说,交换相邻两个逆序数,最终实现整个序列有序,那么交换的次数即为逆序对的数量。

冒泡排序可以解决逆序对问题,但是由于冒泡排序本身效率不高,时间复杂度为O(n^2),对于n比较大的情况就没用武之地了。我们可以这样认为,冒泡排序求逆序对效率之所以低,是因为其在统计逆序对数量的时候是一对一对统计的,而对于范围为n的序列,逆序对数量最大可以是(n+1)*n/2,因此其效率太低.那怎样可以一下子统计多个,而不是一个一个累加呢?这个时候,归并排序就可以帮我们来解决这个问题。
在合并操作中,我们假设左右两个区间元素为:

左边:{3 4 7 9} 右边:{1 5 8 10}

那么合并操作的第一步就是比较3和1,然后将1取出来放到辅助数组中,这个时候我们发现,右边的区间如果是当前比较的较小值,那么其会与左边剩余的数字产生逆序关系,也就是说1和3、4、7、9都产生了逆序关系,我们可以一下子统计出有4对逆序对。接下来3,4取下来放到辅助数组后,5与左边剩下的7、9产生了逆序关系,我们可以统计出2对。依此类推,8与9产生1对,那么总共有4+2+1对。这样统计的效率就会大大提高,便可较好地解决逆序对问题。

而在算法的实现中,我们只需略微修改原有归并排序,当右边序列的元素为较小值时,就统计其产生的逆序对数量,即可完成逆序对的统计。.

(2).代码

const int maxn = 1e5 + 10;
int q[maxn], tmp[maxn];
void merge_sort(int q[], int l, int r)
{
	if (l >= r)  return; //如果只有一个数字或没有数字,则无需排序
	int mid = (l + r )/2;
	merge_sort(q, l, mid);       //分解左序列
	merge_sort(q, mid + 1, r); //分解右序列
	int k = l, i = l, j = mid + 1;
	while (i <= mid && j <= r)   //合并
	{
		if (q[i] <= q[j]) tmp[k++] = q[i++];
		else 
		{
		    tmp[k++] = q[j++];
		    ans += mid - i + 1;   //统计产生逆序对的数量
		}
	}
	while (i <= mid) tmp[k++] = q[i++];   //复制左边子序列剩余
	while (j <= r) tmp[k++] = q[j++];    //复制右边子序列剩余
	for (int i = l; i <= r; i++) q[i] = tmp[i];
}

其中,ans+=mid-i+1 这句代码统计新增逆序对的数量,ans作为全局变量,用于统计逆序对的数量,此时ans要增加左边剩余元素的个数。当归并排序结束后,逆序对也得到解决,ans即为逆序对的数量。

3.例题

(1).题目
给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i < j 且 a[i] > a[j],则其为一个逆序对;否则不是。

输入格式
第一行包含整数n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式
输出一个整数,表示逆序对的个数。

数据范围
1≤n≤100000
输入样例:
6
2 3 4 5 6 1
输出样例:
5

//归并排序模板
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn = 1e6 + 10;
int q[maxn], tmp[maxn];
long long ans = 0;
void merge_sort(int q[], int l, int r)
{
	if (l >= r)  return;      //如果只有一个数字或没有数字,则无需排序
	int mid = (l + r ) /2;
	merge_sort(q, l, mid);       //分解左序列   
	merge_sort(q, mid + 1, r);   //分解右序列  
	int k = l, i = l, j = mid + 1;
	while (i <= mid && j <= r)   //合并
	{
		if (q[i] <= q[j]) tmp[k++] = q[i++];
		else
		{
			tmp[k++] = q[j++];
			ans += mid - i + 1;
		}
	}
	while (i <= mid) tmp[k++] = q[i++];   //复制左边子序列剩余
	while (j <= r) tmp[k++] = q[j++];    //复制右边子序列剩余
	for (int i = l; i <= r; i++) q[i] = tmp[i];
}
int main()
{

	int n;
	cin >> n;
	for (int i = 0; i < n; i++)
	{
		cin >> q[i];
	}
	merge_sort(q, 0, n - 1);
	cout << ans << endl;
	return 0;
}

参考书籍:《信息学奥赛一本通》,《算法笔记.胡凡》,将其中讲解的很好的内容搬运过来并加以整理,方便各位对归并排序和逆序对的学习。

归并排序是一种经典的排序算法,它通过将待排序的序列递归地划分成较小的子序列,然后将这些子序列进行合并,最终得到一个有序的序列。在归并排序的过程中,可以通过统计逆序对的数量来评估序列的有序程度。 使用归并排序逆序对的基本思想是:在合并两个有序子序列的过程中,如果左子序列中的元素大于右子序列中的元素,则构成了一个逆序对。在合并过程中,统计逆序对的数量,并将两个子序列合并成一个有序序列。 具体步骤如下: 1. 将待排序序列不断二分,直到每个子序列只有一个元素。 2. 逐层合并相邻的子序列,并在合并过程中统计逆序对的数量。 3. 重复步骤2,直到所有子序列合并成一个有序序列。 以下是使用归并排序逆序对的示例代码: ```python def merge_sort(arr): if len(arr) <= 1: return arr, 0 mid = len(arr) // 2 left, count_left = merge_sort(arr[:mid]) right, count_right = merge_sort(arr[mid:]) merged, count_merge = merge(left, right) return merged, count_left + count_right + count_merge def merge(left, right): merged = [] count = 0 i, j = 0, 0 while i < len(left) and j < len(right): if left[i] <= right[j]: merged.append(left[i]) i += 1 else: merged.append(right[j]) j += 1 count += len(left) - i merged.extend(left[i:]) merged.extend(right[j:]) return merged, count ``` 使用上述代码,可以通过调用`merge_sort`函数来求解给定序列的逆序对数量。函数返回排序后的序列以及逆序对的数量。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小鹿@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值