数论 - 高斯消元算法

1.高斯消元

(1)定义

高斯消元法是求解线性方阵组的一种算法,它也可用来求矩阵的秩,以及求可逆方阵的逆矩阵。它通过逐步消除未知数来将原始线性系统转化为另一个更简单的等价的系统。它的实质是通过初等行变化将线性方程组的增广矩阵转化为行阶梯矩阵.

在这里插入图片描述

(2)初等行变换

初等行变换
定义:所谓数域P上矩阵的初等行变换是指下列3种变换:
(1)以P中一个非零的数乘矩阵的某一行
(2)把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数
(3)互换矩阵中两行的位置
一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作 A -> B 可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。
在这里插入图片描述

2.算法步骤

枚举每一列c
(1)找到绝对值最大的一行
(2)将该行变换到最上面
(3)将该行第一个数变成1
(4)将该行下面所有行的第c列变成0
(5)最后再把阶梯型矩阵从下到上回代到第一层即可得到方程的解

3.代码模板

double a[N][N]; //a[N][N]是增广矩阵
int gauss()
{
    int c, r;// c 代表 列 col , r 代表 行 row
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;// 先找到当前这一列,绝对值最大的一个数字所在的行号
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;// 如果当前这一列的最大数都是 0 ,那么所有数都是 0,就没必要去算了,因为它的约束方程,可能在上面几行

        for (int i = c; i < n + 1; i ++ ) swap(a[t][i], a[r][i]); 把当前这一行,换到最上面(不是第一行,是第 r 行)去
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];// 把当前这一行的第一个数,变成 1, 方程两边同时除以 第一个数,必须要到着算,不然第一个数直接变1,系数就被篡改,后面的数字没法算
        for (int i = r + 1; i < n; i ++ )// 把当前列下面的所有数,全部消成 0
            if (fabs(a[i][c]) > eps)// 如果非0 再操作,已经是 0就没必要操作了
                for (int j = n; j >= c; j -- )// 从后往前,当前行的每个数字,都减去对应列 * 行首非0的数字,这样就能保证第一个数字是 a[i][0] -= 1*a[i][0];
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;// 这一行的工作做完,换下一行
    }

    if (r < n)// 说明剩下方程的个数是小于 n 的,说明不是唯一解,判断是无解还是无穷多解
    {// 因为已经是阶梯型,所以 r ~ n-1 的值应该都为 0
        for (int i = r; i < n; i ++ )// 
            if (fabs(a[i][n]) > eps)// a[i][n] 代表 b_i ,即 左边=0,右边=b_i,0 != b_i, 所以无解。
                return 2;  //无解
        return 1   ;// 否则, 0 = 0,就是r ~ n-1的方程都是多余方程,多组解
    }
    // 唯一解 ↓,从下往上回代,得到方程的解
    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[j][n] * a[i][j];//因为只要得到解,所以只用对 b_i 进行操作,中间的值,可以不用操作,因为不用输出

    return 0;  //一个解
}

4.题目练习

(1).AcWing 883. 高斯消元解线性方程组

输入一个包含n个方程n个未知数的线性方程组。
方程组中的系数为实数。
求解这个方程组。
下图为一个包含m个方程n个未知数的线性方程组示例:
在这里插入图片描述
输入格式
第一行包含整数n。
接下来n行,每行包含n+1个实数,表示一个方程的n个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共n行,其中第i行输出第i个未知数的解,结果保留两位小数。
如果给定线性方程组存在无数解,则输出“Infinite group solutions”。
如果给定线性方程组无解,则输出“No solution”。
数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过100。
输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00

(2).ac代码
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e2 + 10;
const double eps = 1e-6;
double a[N][N];
int n;
int gauss()
{
	int c, r;   //col 列,row 行
	for (c = 0, r = 0; c < n; c++)
	{
		int t = c;
		for (int i = r; i < n; i++)
		{
			if (fabs(a[i][c]) > fabs(a[t][c]))
			{
				t = i; 
			}
		}
		if (fabs(a[t][c]) < eps)  continue;
		for (int i = c; i < n + 1; i++)
		{
			swap(a[t][i], a[r][i]);
		}
		for (int i = n; i >= c; i--)  a[r][i] /= a[r][c];
		for (int i = r + 1; i < n; i++)
			if (fabs(a[i][c]) > eps)
				for (int j = n; j >= c; j--)
					a[i][j] -= a[r][j] * a[i][c];
		r++;
	}
	if (r < n)
	{
		for (int i = r; i < n; i++)
			if (fabs(a[i][n] > eps))
				return 2;
		return 1;
	}
	for (int i = n - 1; i >= 0; i--)
		for (int j = i + 1; j < n; j++)
			a[i][n] -= a[j][n] * a[i][j];
	return 0;
}

int main()
{
	cin >> n;
	for (int i = 0; i < n; i++)
		for (int j = 0; j < n + 1; j++)
			cin >> a[i][j];

	int t = gauss();

	if (t == 0)
	{
		for (int i = 0; i < n; i++) printf("%.2lf\n", a[i][n]);
	}
	else if (t == 1) puts("Infinite group solutions");
	else puts("No solution");

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小鹿@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值